Skip to main content

Forcing Monotonicity in Parameterized Verification: From Multisets to Words

  • Conference paper
SOFSEM 2010: Theory and Practice of Computer Science (SOFSEM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5901))

  • 925 Accesses

Abstract

We present a tutorial on verification of safety properties for parameterized systems. Such a system consists of an arbitrary number of processes; the aim is to prove correctness of the system regardless of the number of processes inside the system. First, we consider a class of parameterized systems whose behaviours can be captured exactly as Petri nets using counter abstraction. This allows analysis using the framework of monotonic transition systems introduced in [1]. Then, we consider parameterized systems for which there is no natural ordering which allows monotonicity. We describe the method of monotonic abstraction which provides an over-approximation of the transition system. We consider both systems where the over-approximation gives rise to reset Petri nets, and systems where the abstract transition relation is a set of rewriting rules on words over a finite alphabet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General Decidability Theorems for Infinite-State Systems. In: Proc. LICS 1996, 11th IEEE Int. Symp. on Logic in Computer Science, pp. 313–321 (1996)

    Google Scholar 

  2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic Analysis of Programs with Well Quasi-Ordered Domains. Information and Computation 160, 109–127 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-State Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular Model Checking without Transducers (on Efficient Verification of Parameterized Systems). In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Handling Parameterized Systems with Non-Atomic Global Conditions. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Abdulla, P.A., Jonsson, B.: Verifying Programs with Unreliable Channels. In: Proc. LICS 1993, 8th IEEE Int. Symp. on Logic in Computer Science, pp. 160–170 (1993)

    Google Scholar 

  7. Abdulla, P.A., Jonsson, B.: Model Checking of Systems with Many Identical Timed Processes. Theoretical Computer Science 290(1), 241–264 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dickson, L.E.: Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors. Amer. J. Math. 35, 413–422 (1913)

    Article  MathSciNet  Google Scholar 

  9. Emerson, E., Namjoshi, K.: On Model Checking for Non-Deterministic Infinite-State Systems. In: Proc. LICS 1998, 13th  IEEE Int. Symp. on Logic in Computer Science, pp. 70–80 (1988)

    Google Scholar 

  10. Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadcast Protocols. In: Proc. LICS 1999, 14th IEEE Int. Symp. on Logic in Computer Science (1999)

    Google Scholar 

  11. Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Higman, G.: Ordering by Divisibility in Abstract Algebras. Proc. London Math. Soc. (3), 2(7), 326–336 (1952)

    Google Scholar 

  13. Yonesaki, N., Katayama, T.: Functional Specification of Synchronized Processes Based on Modal Logic. In: IEEE 6th International Conference on Software Engineering, pp. 208–217 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdulla, P.A. (2010). Forcing Monotonicity in Parameterized Verification: From Multisets to Words. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11266-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11265-2

  • Online ISBN: 978-3-642-11266-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics