Skip to main content

A Linear Time Algorithm for Finding Three Edge-Disjoint Paths in Eulerian Networks

  • Conference paper
SOFSEM 2010: Theory and Practice of Computer Science (SOFSEM 2010)

Abstract

Consider an undirected graph G = (VG, EG) and a set of six terminals T = {s 1, s 2, s 3, t 1, t 2, t 3} ⊆ VG. The goal is to find a collection \(\mathcal{P}\) of three edge-disjoint paths P 1, P 2, and P 3, where P i  connects nodes s i and t i (i = 1, 2, 3).

Results obtained by Robertson and Seymour by graph minor techniques imply a polynomial time solvability of this problem. The time bound of their algorithm is O(m 3) (hereinafter we assume n : = |VG|, m : = |EG|, n = O(m)).

In this paper we consider a special, Eulerian case of G and T. Namely, construct the demand graph H = (VG, {s 1 t 1, s 2 t 2, s 3 t 3}). The edges of H correspond to the desired paths in \(\mathcal{P}\). In the Eulerian case the degrees of all nodes in the (multi-) graph G + H (= (VG, EG ∪ EH)) are even.

Schrijver showed that, under the assumption of Eulerianess, cut conditions provide a criterion for the existence of \(\mathcal{P}\). This, in particular, implies that checking for existence of \(\mathcal{P}\) can be done in O(m) time. Our result is a combinatorial O(m)-time algorithm that constructs \(\mathcal{P}\) (if the latter exists).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cormen, T., Stein, C., Rivest, R., Leiserson, C.: Introduction to Algorithms. McGraw-Hill Higher Education, New York (2001)

    MATH  Google Scholar 

  2. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  3. Marx, D.: Eulerian Disjoint Paths Problem in Grid Graphs is NP-Complete. Discrete Applied Mathematics 143, 336–341 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Robertson, N., Seymour, P.D.: Graph Minors XIII. The Disjoint Paths Problem. Journal of Combinatorial Theory (Series B) 63, 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)

    MATH  Google Scholar 

  6. Shiloach, Y.: A Polynomial Solution to the Undirected Two Paths Problem. J. ACM 27(3), 445–456 (1980)

    MATH  MathSciNet  Google Scholar 

  7. Shiloach, Y., Perl, Y.: Finding Two Disjoint Paths between Two Pairs of Vertices in a Graph. J. ACM 25(1), 1–9 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tholey, T.: Solving the 2-Disjoint Paths Problem in Nearly Linear Time. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 350–361. Springer, Heidelberg (2004)

    Google Scholar 

  9. Tholey, T.: Improved Algorithms for the 2-Vertex Disjoint Paths Problem. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 546–557. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babenko, M.A., Kolesnichenko, I.I., Razenshteyn, I.P. (2010). A Linear Time Algorithm for Finding Three Edge-Disjoint Paths in Eulerian Networks. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11266-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11265-2

  • Online ISBN: 978-3-642-11266-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics