
ar
X

iv
:0

91
1.

05
77

v2
 [

cs
.D

S]
 8

 S
ep

 2
01

0

Fast Arc-Annotated Subsequence Matching in Linear Space∗

Philip Bille†

phbi@imm.dtu.dk

Inge Li Gørtz‡

ilg@imm.dtu.dk

Abstract

An arc-annotated string is a string of characters, called bases, augmented with a set of pairs,
called arcs, each connecting two bases. Given arc-annotated strings P and Q the arc-preserving
subsequence problem is to determine if P can be obtained from Q by deleting bases from Q.
Whenever a base is deleted any arc with an endpoint in that base is also deleted. Arc-annotated
strings where the arcs are “nested” are a natural model of RNA molecules that captures both the
primary and secondary structure of these. The arc-preserving subsequence problem for nested
arc-annotated strings is basic primitive for investigating the function of RNA molecules. Gramm
et al. [ACM Trans. Algorithms 2006] gave an algorithm for this problem using O(nm) time
and space, where m and n are the lengths of P and Q, respectively. In this paper we present
a new algorithm using O(nm) time and O(n +m) space, thereby matching the previous time
bound while significantly reducing the space from a quadratic term to linear. This is essential to
process large RNA molecules where the space is likely to be a bottleneck. To obtain our result
we introduce several novel ideas which may be of independent interest for related problems on
arc-annotated strings.

1 Introduction

An arc-annotated string S is a string augmented with an arc set AS . Each character in S is called a
base and the arc set AS is a set of pairs of positions in S connecting two distinct bases. We say that
S is a nested arc-annotated string if no two arcs in AS share an endpoint and no two arcs cross each
other, i.e., for all (il, ir), (i

′
l, i

′
r) ∈ AS we have that il < i′l < ir iff il < i′r < ir. Given arc-annotated

strings P and Q we say that P is a arc-preserving subsequence (APS) of Q, denoted P ⊑ Q, if P
can be obtained from Q by deleting 0 or more bases from Q. Whenever a base is deleted any arc
with an endpoint in that base is also deleted. The arc-preserving subsequence problem (APS) is to
determine if P ⊑ Q. If P and Q are both nested arc-annotated strings we refer to the problem
as the nested arc-preserving subsequence problem (NAPS). Fig. 1(a) shows an example of nested
arc-annotated strings.

Ribonucleic acid (RNA) molecules are often modeled as nested arc-annotated strings. Here,
the string consists of bases from the 4-letter alphabet {A,U,C,G}, called the primary structure,
and an arc set consisting of pairings between bases, called the secondary structure. The secondary

∗An extended abstract of this paper appeared in proceedings of the 36th International Conference on Current

Trends in Theory and Practice of Computer Science.
†Supported by the Danish Agency for Science, Technology, and Innovation.
‡Corresponding author. Address: Technical University of Denmark, Informatics and Mathematical Modelling,

Building 322, Office 124, DK-2800 Kongens Lyngby, Denmark. Phone: +45 45 25 36 73. Fax: +45 45 93 00 74

1

http://arxiv.org/abs/0911.0577v2

1110987654321

87654321 9
1, 11

3, 8

5, 7

9, 10

1, 9

3, 5 7, 8P

Q

A U

CGG

G

C

CC AAA

AAAA U U

U

U

(a) (b)

TQ

TP

Figure 1: (a) Nested arc-annotated strings P and Q. Here, P and Q contain arcs connecting their
first and last bases. (b) The corresponding trees TP and TQ induced by the arcs.

structure of RNA is central for many biological functions and it is more preserved in evolution than
the primary structure [2, 8, 12,15,16,21]. NAPS is a simple primitive for comparing the secondary
structure of the RNA molecules. Furthermore, it may also serve as the subroutine in algorithms
for the more general longest common arc-preserving subsequence problem (LAPCS), see Gramm et
al. [13].

Building on earlier work in a related model of RNA molecules by Vialette [22], Gramm et al. [13]
introduced and gave an algorithm for NAPS using O(nm) time and space, where m and n are the
lengths of P and Q, respectively. Kida [17] presented an experimental study of this algorithm and
Damaschke [10] considered a special restricted case of the problem.

1.1 Results

We assume a standard unit-cost RAM model with word size Θ(log n) and a standard instruction
set including arithmetic operations, bitwise boolean operations, and shifts. The space complexity
is the number of words used by the algorithm. All of the previous results are in same model of
computation. Throughout the paper P and Q are nested arc-annotated strings of lengths m and
n, respectively. In this paper we present a new algorithm with the following complexities.

Theorem 1 Given nested arc-annotated strings P and Q of lengths m and n, respectively, we can
solve the nested arc-preserving subsequence problem in time O(nm) and space O(n+m).

Hence, we match the running time of the currently fastest known algorithm and at the same time we
improve the space from O(nm) to O(n+m). This space improvement is critical for processing large
RNA molecules. In particular, an algorithm using O(nm) space quickly becomes infeasible, even for
moderate sizes of RNA molecules, due to costly accesses to external memory. An algorithm using
O(m+n) space is much more scalable and allows us to handle significantly larger RNA molecules.
Furthermore, we note that obtaining an algorithm using O(nm) time and o(nm) space is mentioned
as an open problem in Gramm et al. [13].

Compared to the previous work by Gramm et al. [13] our algorithm is not only more space-
efficient but also simpler. Our algorithm is based on a single unified dynamic programming re-
currence, whereas the algorithm by Gramm et al. requires computing and tabulating auxiliary
information in multiple phases mixed with dynamic programming. Our approach allows us to
better expose the features of NAPS and is essential for obtaining a linear space algorithm.

2

1.2 Techniques

As mentioned above, our algorithm is based on a new dynamic programming recurrence. Essentially,
the recursion expresses for any pair of substrings P ′ and Q′ of P and Q, respectively, the longest
prefix of P ′ which is an arc-preserving subsequence of Q′ in term of smaller substrings of P ′ and
Q′. We combine several new ideas with well-known techniques to convert our recurrence into an
efficient algorithm.

First, we organize the dynamic programming recurrence into Γ sequences. A Γ sequence for
a given substring Q′ of Q is a simple O(m) space representation of the longest arc-preserving
subsequences of each prefix of P in Q′. We show how to efficiently manipulate Γ sequences to get
new Γ sequences using a small set of simple operations, called the primitive operations. Secondly,
we organize the computation of Γ sequences using a recursive algorithm that traverses the tree
structure of the arcs in Q. The algorithm computes the Γ sequence for each arc in Q using the
primitive operations. To avoid storing too many Γ sequences during the traversal we direct the
computation according to the well-known heavy-path decomposition of the tree. This leads to an
algorithm that stores at most O(log |AQ|) Γ sequences. Since each Γ sequence uses O(m) space the
total space becomes O(m log |AQ|+ n).

Finally, to achieve linear space we exploit a structural property of Γ sequences to compress them
efficiently. We obtain a new representation of Γ sequences that only requires O(m) bits. Plugging in
the new representation into our algorithm the total space becomes O(n+m) as desired. However,
the resulting algorithm requires many costly compressions and decompressions of Γ sequences at
each arc in the traversal. As a practical and more elegant solution we show how to augment the
compressed representation of Γ sequences using standard rank/select indices to obtain constant
time random access to elements in Γ sequences. This allows us to compress each Γ sequence only
once and avoid decompression entirely without affecting the complexity of the algorithm.

1.3 Related Work

Arc-annotated strings are a natural model of RNA molecules that captures both the primary and
secondary structure of these. Consequently, a wide range of pattern matching problems for them
have been studied, see e.g., [1, 3, 4, 7, 11, 13, 19]. Among these, NAPS is one of the most basic
problems.

The NAPS problem generalizes the tree inclusion problem for ordered trees [5,9,18]. Here, the
goal is to determine if a tree can be obtained from another tree by deleting nodes. This is equivalent
to NAPS where all bases in both strings have an incident arc. The authors have shown how to solve
the tree inclusion problem in time O(nm/ log n+n log n) and space O(n+m) [5]. Compared to our
current result for NAPS the space complexity is the same but the time complexity for tree inclusion
is a factor O(log n) better for most values of m and n. Though our obtained complexities for the
tree inclusion problem and NAPS are very similar, the ideas and techniques behind the results
differ significantly. While the definition of the two problems seems very similar it appears that
the more general NAPS is significantly more complicated. We leave it as an interesting research
direction to determine the precise relationship between NAPS and the tree inclusion problem.

Several generalizations of NAPS have also been studied relaxing the requirement that arcs
should be nested [6, 11,13]. In nearly all cases the resulting problem becomes NP-complete.

3

P

Q

A U

CGG

G

C

CC AAA

AAAA U U

U

U

Figure 2: An embedding of P in Q. f(1) = 1, f(2) = 2 and f(j) = j + 2 for j = 3, 4, . . . , 9. AP =
{(1, 9), (3, 5), (7, 8)} and AQ = {(1, 11), (3, 8), (5, 7), (9, 10)}. We have (f(1), f(9)) = (1, 11) ∈ AQ,
(f(3), f(5)) = (5, 7) ∈ AQ, and (f(7), f(8)) = (9, 10) ∈ AQ.

1.4 Outline

In Sec. 2 we give some preliminaries and define our notation. Sec. 3 contains our dynamic pro-
gramming recurrence. In Sec. 4 we present our main algorithm achieving O(m log |AQ|+ n) space.
Finally, in Sec. 5 we show how to compress the Γ sequences stored by our algorithm to obtain
O(n+m) space.

2 Preliminaries and Notation

Let S be an arc-annotated string with arc set AS . The length of S is the number of bases in S
and is denoted |S|. We will assume that our input strings P and Q have the arcs (1, |P |) and
(1, |Q|), respectively. If this is not the case we may always add additional connected bases to the
start and end of P and Q without affecting the solution or complexity of the problem. We do this
only to ensure that the nesting of the arcs form a tree (rather than a forest) which simplifies the
presentation of our algorithm.

The arc-annotated substring S[i1, i2], 1 ≤ i1, i2 ≤ |S|, is the string of bases starting at i1 and
ending at i2. The arc set associated with S[i1, i2] is the subset of AS of arcs with both endpoints
in [i1, i2]. We define S[i1] = S[i1, i1] and S[i1, i2] = ǫ (the empty string) if i1 > i2. Note the arc
set of an arc-annotated string of length ≤ 1 is also empty. A split of S is a partition of S into two
substrings S[1, i] and S[i+ 1, |S|], for some i, 0 ≤ i ≤ |S|. The split is an arc-preserving split if no
arcs in AS cross i, i.e., all arcs either have both endpoints in S[1, i] or S[i + 1, |S|]. We say that
the index i induces a (arc-preserving) split of S.

An embedding of P in Q is an injective function f : {1, . . . ,m} → {1, . . . , n} such that

1. for all j ∈ {1, . . . ,m}, P [j] = Q[f(j)]. (base match condition)

2. for all indices jl, jr ∈ {1, . . . ,m}, (jl, jr) ∈ AP ⇔ (f(jl), f(jr)) ∈ AQ. (arc match condition)

3. for all i, j ∈ {1, . . . ,m}, i < j ⇔ f(i) < f(j). (order condition)

If f(j) = i we say that j is matched to i in the embedding. From the definition of arc-preserving
subsequences we have that P ⊑ Q iff there is an embedding of P in Q. Figure 3 gives an example
of an embedding.

4

A U

CGG

G

C

CC AAA

AAAA U U

U

U

P
′

Q′

A

CGG

G

C

CCAA

AAA U

UA

AU

U

U

P1 P2

Q1 Q2

Figure 3: Illustation of the Splitting Lemma. Index i = 8 induces an arc-preserving split of Q′

with Q1 = Q′[1, 8] and Q2 = Q′[9, 11]. Index j = 6 induces an arc-preserving split of P ′ with
P1 = P ′[1, 6] and P2 = P ′[7, 9] such that P1 ⊑ Q1 and P2 ⊑ Q2.

3 The Dynamic Programming Recurrence

In this section we give our dynamic programming recurrence for NAPS. Essentially, the recursion
expresses for any pair of substrings P ′ and Q′ of P and Q, respectively, the longest prefix of P ′

which is an arc-preserving subsequence of Q′ in terms of smaller substrings of P ′ and Q′.
We show the following key properties of arc-preserving splits.

Lemma 1 (Splitting Lemma) Let P ′ and Q′ be arc-annotated substrings of P and Q, respec-
tively, and let (Q1, Q2) be any arc-preserving split of Q′.

(i) If P ′ ⊑ Q′ then there exists an arc-preserving split (P1, P2) of P ′ such that P1 ⊑ Q1 and
P2 ⊑ Q2.

(ii) Let (P1, P2) be an arc-preserving split of P ′. Then P1 ⊑ Q1 and P2 ⊑ Q2 ⇒ P ′ ⊑ Q′.

Proof. Let P ′ = P [j1, j2], Q
′ = Q[i1, i2], Q1 = Q[i1, i], and Q2 = Q[i+ 1, i2].

To prove (i), let f be an embedding of P ′ in Q′ (such an embedding exists since P ′ ⊑ Q′).
Let j be the largest index such that f(j) ∈ [i1, i], i.e., f(j) is a base in Q1. It follows that
f1 : {j1, . . . , j} → {i1, . . . , i}, where f1(x) = f(x), is an embedding of P [j1, j] in Q1, and thus
P [j1, j] ⊑ Q1. Similarly, f2 : {j +1, . . . , j2} → {i+1, . . . , i2}, where f2(x) = f(x), is an embedding
of P [j + 1, j2] in Q2, and therefore P [j + 1, j2] ⊑ Q2. We have now shown that there exists a split
(P1, P2), with P1 = P [j1, j] and P2 = P [j + 1, j2], such that P1 ⊑ Q1 and P2 ⊑ Q2. It remains to
show that this is an arc-preserving split, i.e., that there are no arcs from P [j1, j] to P [j + 1, j2] in
AP ′ . For contradiction assume that there exists an arc (jl, jr) with jl ∈ [j1, j] and jr ∈ [j + 1, j2].
By the definition of f1 and f2 we have f(jl) = f1(jl) ∈ [i1, i] and f(jr) = f2(jr) ∈ [i + 1, i2].
Since f is an embedding of P ′ in Q′ it follows from the arc match condition that there is an arc
(f(jl), f(jr)) ∈ AQ′ . But this contradicts the fact that (Q1, Q2) is an arc-preserving split of Q′.
Thus there can be no such arc and it follows that j induces an arc-preserving split of P ′.

To prove (ii), assume P1 ⊑ Q1 and P2 ⊑ Q2. Let f1 be the embedding of P1 in Q[i1, i], let f2
be the embedding of P2 in Q[i+1, i2], and let j be the index such that P1 = P [j1, j]. We will show
that the embedding f : {j1, . . . , j2} → {i1, . . . , i2},

f(x) =

{

f1(x) x ∈ [j1, j]

f2(x) x ∈ [j + 1, j2]

is an embedding of P ′ in Q′.

5

We have that f satisfies the base match condition and the order condition. It remains to
show that it satisfies the arc match condition. Since j induces an arc-preserving split of P ′ we
have AP ′ = AP1

∪ AP2
. Let (jl, jr) be an arc in AP ′ . If (jl, jr) ∈ AP1

, then (f(jl), f(jr)) =
(f1(jl), f1(jr)) ∈ AQ1

, since f1 is an embedding of P1 in Q1. Similarly, if (jl, jr) ∈ AP2
, then

(f(jl), f(jr)) = (f2(jl), f2(jr)) ∈ AQ2
. Thus (jl, jr) ∈ AP ′ ⇒ (f(jl), f(jr)) ∈ AQ′ . By the same

kind of argument it follows that since i induces an arc-preserving split of Q′, (f(jl), f(jr)) ∈ AQ′ ⇒
(jl, jr) ∈ AP ′ . �

We now define γ, which we will use to give our dynamic programming recurrence for NAPS.

Definition 1 For 1 ≤ jl ≤ m, l ∈ {1, 2}, and 1 ≤ i1 ≤ i2 ≤ n, define γ(j1, j2, i1, i2) to be the
largest integer k such that P [j1, k] ⊑ Q[i1, i2] and k induces an arc-preserving split of P [j1, j2].

It follows that γ(1,m, 1, n) = m if and only if P ⊑ Q.
The Splitting Lemma gives us a very useful property of γ: The requirement that k induces an

arc-preserving split of P [j1, j2] in the definition of γ implies that if there exists an embedding f of
P [k+1, j2] in Q[i2, i] for some i then by the Splitting Lemma the embedding of P [j1, k] in Q[i1, i2]
(which exists by the definition of γ) can be extended with f to get an embedding of P [j1, j2] in
Q[i1, i]. This would not be true if we dropped the requirement that k induces an arc-preserving
split of P [j1, j2]. Formally,

Corollary 1 Let i be an index inducing an arc-preserving split of Q[i1, i2]. Then,

γ(j1, j2, i1, i2) = γ(γ(j1, j2, i1, i) + 1, j2, i+ 1, i2) .

Proof. Let k = γ(j1, j2, i1, i2), j = γ(j1, j2, i1, i), and k′ = γ(j + 1, j2, i + 1, i2). We want to show
that k′ = k. We will first show that k′ ≤ k by using the second part of the Splitting Lemma. Next
we show that k′ ≥ k by using the first part of the splitting lemma.

Let Q1 = Q[i1, i] and Q2 = [i+ 1, i2]. By the definition of γ, j and k′ we have

P [j1, j] ⊑ Q1 and P [j + 1, k′] ⊑ Q2 .

Since P [j1, k] ⊑ Q[i1, i2] and j + 1 ≥ j1 we have,

P [j + 1, k] ⊑ Q[i1, i2] .

By the definition of γ, index j induces an arc-preserving split of P [j1, j2]. Since k
′ ≤ j2 index j also

induces an arc-preserving split of P [j1, k
′]. By the Splitting Lemma (ii) we have P [j1, k

′] ⊑ Q[i1, i2].
Since k′ induces an arc-preserving split of P [j+1, j2] and j induces an arc-preserving split of P [j1, j2]
we have that k′ induces an arc-preserving split of P [j1, j2]. This, together with P [j1, k

′] ⊑ Q[i1, i2],
implies k′ ≤ k, since by definition of γ, k is the largest index inducing an arc-preserving split of
P [j1, j2] such that P [j1, k] ⊑ Q[i1, i2].

To show that k ≤ k′ we use the first part of the Splitting Lemma. Since i induces an arc-
preserving split of Q[i1, i2], by the Splitting Lemma (i) there exists a j′ such that P [j1, j

′] ⊑ Q1

and P [j′ + 1, k] ⊑ Q2 and j′ induces an arc-preserving split of P [j1, j2]. Let j
∗ be the largest such

j′. We will show that j∗ = γ(j1, j2, i1, i) = j. This implies P [j +1, k] = P [j∗ +1, k] ⊑ Q2 and thus
k ≤ k′ since k′ is the largest integer such that P [j + 1, k′] ⊑ Q2.

By definition j is the largest integer inducing an arc-preserving split of P [j1, j2] such that
P [j1, j] ⊑ Q1 and thus j∗ ≤ j. But this implies P [j + 1, k] ⊑ P [j∗ + 1, k] ⊑ Q2. Thus j = j∗. �

6

Intuitively, the corollary says that to compute the largest prefix of P that can be embedded
in Q we can greedily match the bases and right endpoints of arcs of P as much to the left in Q
as possible. The dynamic programming recurrence for γ is as follows. The intuition behind the
recurrence is that it corresponds to computing the leftmost embedding of P [j1, j2] in Q[i1, i2].

Base cases. γ(j1, j2, i1, i2) is equal to







j1 − 1 if j1 > j2, (1)

j1 if i1 = i2 and P [j1] = Q[i1] and

(j1, jr) 6∈ AP for all jr ≤ j2, (2a)

j1 − 1 if i1 = i2 and (P [j1] 6= Q[i1] or

(j1, jr) ∈ AP for some jr ≤ j2). (2b)

Recursive cases. i1 < i2 and j1 ≤ j2.

If (i1, ir) 6∈ AQ for all ir ≤ i2 then γ(j1, j2, i1, i2) is equal to

{

γ(j1 + 1, j2, i1 + 1, i2) if (j1, jr) 6∈ AP for all jr ≤ j2 and P [j1] = Q[i1], (3)

γ(j1, j2, i1 + 1, i2) if (j1, jr) ∈ AP for some jr ≤ j2 or P [j1] 6= Q[i1], (4)

If (i1, ir) ∈ AQ for some ir < i2, then γ(j1, j2, i1, i2) is equal to

γ(γ(j1, j2, i1, ir) + 1, j2, ir + 1, i2) (5)

If (i1, i2) ∈ AQ then γ(j1, j2, i1, i2) is equal to







max{γ(j1, j2, i1 + 1, i2),

γ(j1, j2, i1, i2 − 1)} if (j1, jr) 6∈ AP for all jr ≤ j2, (6)

γ(j1, j2, i1 + 1, i2) if (j1, jr) ∈ AP for some jr ≤ j2, (7)

and P [j1] 6= Q[i1] or P [jr] 6= Q[i2],

max{φ, γ(j1, j2, i1 + 1, i2)} if (j1, jr) ∈ AP for some jr ≤ j2, (8)

P [j1] = Q[i1] and P [jr] = Q[i2],

where

φ =

{

jr if γ(j1 + 1, jr − 1, i1 + 1, i2 − 1) = jr − 1

j1 − 1 otherwise.

The cases are visualized in Fig. 4.
The base cases (1)− (2) cover the cases where P [j1, j2] is the empty string (j2 > j1) or Q[i1, i2]

is a single base (i1 = i2). Let k = γ(j1, j2, i1, i2). Case (3) and (5) follows directly from Corollary 1.

7

P

Q
i1 i2

j1 j2

P

Q
i1 i2

j1 j2

Q
i1 i2

P

Q
i1 i2

j1 j2

P

Q
i1 i2

j1 j2

Case 3 Case 4

Case 5

Case 6 Cases 7 and 8

jr

ir

jr

Figure 4: The main cases from the recurrence relation. Case (3): Neither P or Q starts with an
arc. Case (4): P starts with an arc, Q does not. Case (5): Q starts with an arc not spanning Q.
We split Q after the arc and compute γ first in the first half and then continue the computation in
the other. Case (6): Q starts with an arc, P does not. Case (7)-(8): Both P and Q starts with an
arc.

In case (4) and (7) the base Q[i1] cannot be part of an embedding of P [j1, k] in Q[i1, i2] and thus
γ(j1, j2, i1, i2) = γ(j1, j2, i1+1, i2). In case (6) either Q[i1] or Q[i2], but not both, can be part of an
embedding of P [j1, k] in Q[i1, i2]. Thus, γ(j1, j2, i1, i2) = max{γ(j1, j2, i1, i2−1), γ(j1, j2, i1+1, i2)}.
Case (8) is the most complicated one. Both Q[i1, i2] and P [j1, j2] start with an arc and the bases of
the arcs match. An embedding of P [j1, k] into Q[i1, i2] either (i) matches the two arcs, (ii) matches
the arc (j1, jr) and the rest of P [j1, k] in Q[i1 + 1, i2] or (iii) matches nothing (k = j1 − 1). In case
(ii) γ(j1, j2, i1, i2) = γ(j1, j2, i1 + 1, i2). Case (i) requires that P [j1 + 1, jr − 1] ⊑ Q[i1 + 1, i2 − 1].
We express this in the recurrence by using an auxiliary function φ which is jr if γ(j1+1, jr−1, i1+
1, i2 − 1) = jr − 1 and j1 − 1 otherwise, since in the last case the arc (j1, jr) cannot be matched to
the arc (i1, i2). Since we want the largest match we take the maximum of the two cases (i) and (ii)
(case (iii) is covered by these two).

Relation to the Gramm et al. algorithm The recurrence relation is not very different from
the one implicit in the algorithm by Gramm et al. [13]. Most of the single cases are the same.
The main difference is that they intermix the description of the algorithm and the recurrence.
And where we have the requirement that γ(j1, j2, i1, i2) induces an arc-preserving split of P [j1, j2]
they instead specify a specific order in which to calculate the recurrence and save some auxiliary
information during the computation. Thus our definition of γ gives us the possibility to state the
recurrence relation independently of the algorithm.

4 The Algorithm

We now present an algorithm to solve NAPS in O(nm) time and O(m log |AQ|+ n) space. In the
next section we show how to further reduce the space to O(n +m) to get Theorem 1. The result
relies on a well-known path decomposition for trees applied to arc-annotated strings combined with
a new idea to organize the dynamic programming recurrence computation. We present these in

8

Sections 4.1 and 4.2 before giving the algorithm in Section 4.3.

4.1 Heavy-Path Decomposition of Arc-Annotated Sequences

Let S be a nested arc-annotated string containing the arc (1, |S|) (recall that we assume that both
P and Q have this arc). The arcs in AS induce a rooted and ordered tree TS rooted at the arc
(1, |S|) as shown in Fig. 1(b). We use standard tree terminology for the relationship between arcs
in TS . Let (il, ir) be an arc in AS . The depth of (il, ir) is the number of edges on the path from
(il, ir) to the root in TS . An arc with no children is a leaf arc and otherwise an internal arc.
Define TS(il, ir) to be the subtree of TS rooted at (il, ir) and let size(il, ir) be the number of arcs in
TS(il, ir). Note that size(1, |S|) = |AS |. If (i′l, i

′
r) is an arc in TS(il, ir), then (il, ir) is an ancestor

of (i′l, i
′
r) (note that (il, ir) is an ancestor of itself). If (il, ir) is an ancestor of (i′l, i

′
r), then (i′l, i

′
r) is

a descendant of (il, ir).
As in [14] we partition TS into disjoint paths. We classify each arc as either heavy or light. The

root is light. For each internal arc (il, ir) we pick a child (ihl , i
h
r) of maximum size and classify it

as heavy. The remaining children are light. An edge to a light child is a light edge and an edge to
a heavy child is a heavy edge. Let lightdepth(il, ir) denote the number of light edges on the path
from (il, ir) to the root of TS . If (i

′
l, i

′
r) is a light child of (il, ir), then size(i′l, i

′
r) ≤ size(il, ir)/2 since

otherwise (i′l, i
′
r) would be heavy. Consequently, the number of light edges on a path from the root

to a leaf is at most logarithmic. Specifically, we will use the following well-known bound for trees
restated for nested arc-annotated sequences.

Lemma 2 (Harel and Tarjan [14]) Let S be a nested arc-annotated string containing the arc
(1, |S|). For any arc (il, ir) ∈ AS, lightdepth(il, ir) ≤ log |AS |+O(1).

Removing the light edges we partition TS into heavy paths.

4.2 Manipulating Γ Sequences

For positions i1 and i2 in Q, i1 ≤ i2, define the Γ sequence for i1 and i2 as

Γ(i1, i2) = γ(m,m, i1, i2), γ(m − 1,m, i1, i2), . . . , γ(1,m, i1, i2).

Thus, Γ(i1, i2) is the sequence of endpoints of the longest prefixes of each suffix of P that is an
arc-preserving subsequence of Q[i1, i2]. We can efficiently manipulate Γ sequences as suggested by
the following lemma.

Lemma 3 For any positions i1 and i2 in Q, i1 ≤ i2, we can compute in O(m) time

(i) Γ(i2, i2).

(ii) Γ(i1, i2) from Γ(i1 + 1, i2) if (i1, ir) 6∈ AQ for every ir ≤ i2.

(iii) Γ(i1, i2) from Γ(i1, ir) and Γ(ir + 1, i2) if (i1, ir) ∈ AQ for some ir < i2.

(iv) Γ(i1, i2) from Γ(i1, i2 − 1), Γ(i1 + 1, i2), and Γ(i1 + 1, i2 − 1) if (i1, i2) ∈ AQ.

9

Extend Combine Meld

Figure 5: The extend, combine, and meld operations, respectively. For each operation the substring
range(s) below the string indicate the endpoints of the input Γ sequence(s) needed in the operation
to compute the Γ sequence for the entire string.

Proof. All the cases follow directly from the dynamic programming recurrence. Case (i) follows
from case (2) of the recurrence, Case (ii) from case (3) and (4) of the recurrence, Case (iii) from
case (5) of the recurrence and Case (iv) from case (6)–(8) of the recurrence. �

We will use each of 4 cases in Lemma 3 as primitive operations in our algorithm and we refer to (i),
(ii), (iii), and (iv) as an initialize, an extend, a combine, and a meld operation, respectively. Fig. 5
illustrates the extend, combine, and meld operations. An extend operation from Γ(i1 + k, i2) to
Γ(i1, i2), for some k > 1, is defined to be the sequence of k extend operations needed to compute
Γ(i1, i2) from Γ(i1 + k, i2).

4.3 The Algorithm

We now present our main algorithm. Initially, we construct TQ with a heavy path decomposition
in O(n) time and space. Then, we recursively compute Γ sequences for each arc (il, ir) ∈ AQ in a
top-down traversal of TQ. The Γ sequence for the root contains the value γ(1,m, 1, n) and hence
this suffices to solve NAPS. The main idea is as follows. At each internal arc we first recursively
compute the Γ sequence for the heavy child and then compute Γ sequences for the remaining
light children in a right-to-left order (we will later see that this processing order is essential for
the achieving the space bound). At the same time we use the extend and combine operations to
compute Γ sequences with a right endpoint at ir or ir − 1 and a left endpoint at positions between
children in the same left-to-right order. Finally, we use the meld operation on Γ(il + 1, ir) and
Γ(il, ir − 1) to get Γ(il, ir).

At an arc (il, ir) ∈ AQ in the traversal there are two cases to consider:

Case 1: (il, ir) is a leaf arc. We compute Γ(il, ir) as follows.

1. Initialize Γ(ir, ir) and Γ(ir − 1, ir − 1).

2. Extend Γ(ir, ir) and Γ(ir − 1, ir − 1) to get Γ(il + 1, ir), Γ(il, ir − 1), and Γ(il + 1, ir − 1).

3. Meld Γ(il + 1, ir), Γ(il, ir − 1), and Γ(il + 1, ir − 1) to get Γ(il, ir).

Case 2: (il, ir) is an internal arc. Let (i1l , i
1
r), . . . , (i

s
l , i

s
r) be the childen arcs of (il, ir) in left-

to-right order. To simplify the algorithm we set i0r = il. We compute Γ(il, ir) as follows.

1. Recursively compute Rh := Γ(ihl , i
h
r), where (ihl , i

h
r) is the heavy child arc of (il, ir).

2. Initialize Γ(ir, ir) and Γ(ir − 1, ir − 1).

3. Extend Γ(ir, ir) and Γ(ir − 1, ir − 1) to get Γ(isr + 1, ir) and Γ(isr + 1, ir − 1).

10

(a) (b) (c)

(d) (e) (f)

Figure 6: Snapshot of the Γ sequences computed at an internal arc. The ranges below the arc-
annotated sequences represent Γ sequence endpoints. (a) After the recursive call to the heavy child
in line 1. (b) After the extend operations in line 3. (c) After the recursive call in line 4(a) (d) After
the combine operations in line 4(b). (e) Before the meld operation in line 6. (f) After the meld
operation.

4. For k := s down to 1 do:

(a) If k 6= h recursively compute Rk := Γ(ikl , i
k
r).

(b) Combine Rk with Γ(ikr +1, ir) and with Γ(ikr +1, ir − 1) to get Γ(ikl , ir) and Γ(ikl , ir − 1).

(c) Extend Γ(ikl , ir) and Γ(ikl , ir − 1) to get Γ(ik−1
r + 1, ir) and Γ(ik−1

r + 1, ir − 1).

5. Extend Γ(il + 1, ir − 1) to get Γ(il, ir − 1).

6. Meld Γ(il + 1, ir), Γ(il, ir − 1), and Γ(il + 1, ir − 1) to get Γ(il, ir).

The computation in case 2 is illustrated in Fig. 6. Note that when k = 1 in the loop in line 4, line
4(c) computes Γ(i0r + 1, ir) = Γ(il + 1, ir) and Γ(i0r + 1, ir − 1) = Γ(il + 1, ir − 1). In both cases
above the algorithm computes several local Γ sequences of the form Γ(i, ir) and Γ(i, ir − 1), for
some i ≤ ir. These sequences are computed in order of decreasing values of i and each sequence
only depends on the previous one and recursively computed Γ sequences. Hence, we only need to
store a constant number of local sequences during the computation at (il, ir).

4.4 Analysis

We first consider the time complexity of the algorithm. To do so we bound the total number
of primitive operations. For each arc in AQ there is 1 initialize and 1 meld operation and for
each internal arc there is 1 combine operation. Hence, the total number of initialize, meld, and
combine operations is O(|AQ|). To count the number of extend operations we first define for any
arc (il, ir) ∈ AQ the set spaces(il, ir) as the set of positions inside (il, ir) but not inside any child
arc of (il, ir), that is,

spaces(il, ir) = {i | il ≤ i ≤ ir but not ikl ≤ i ≤ ikr for any child (ikl , i
k
r) of (il, ir)}.

For example, spaces(1, 11) for Q in Fig. 1(a) is {1, 2, 11}. The spaces sets for all arcs is a partition of
the positions in Q and thus

∑

(il,ir)∈AQ
spaces(il, ir) = n. At an arc (il, ir) the algorithm performs

O(spaces(il, ir)) extend operations and hence the total number of extend operations is O(n). By

11

Lemma 3 each primitive operation takes O(m) time and therefore the total running time of the
algorithm is O(|AQ|m+ nm) = O(nm).

For the space complexity we bound the number of Γ sequences stored by the algorithm. When
the algorithm visits an arc (il, ir) we are currently processing a nested sequence of recursive calls
corresponding to a path p in TQ from the root to (il, ir). The number of Γ sequences stored at each
of these recursive calls is the total number of Γ sequences stored. Consider an edge e in p from a
parent (i′l, i

′
r) to a child (i′′l , i

′′
r). If e is heavy the recursive call to (i′′l , i

′′
r) is done in line 1 of case 2

in the algorithm immediately at the start of the visit to (i′l, i
′
r). Therefore, no Γ sequence at (i′l, i

′
r)

is stored. If e is light the recursive call to (i′′l , i
′′
r) is done in line 4(a). The algorithm stores at most

3 Γ sequences, namely Γ(i′′r + 1, i′r), Γ(i
′′
r + 1, i′r − 1), and Γ(ihl

′
, ihr

′
), where (ihl

′
, ihr

′
) is the heavy

child of (i′l, i
′
r). By Lemma 2 there are at most log |AQ|+O(1) light ancestors of (il, ir) in TQ and

therefore the total space for stored Γ sequences is O(m log |AQ|). The additional space used by the
algorithm is O(n). Hence, we have the following result.

Lemma 4 Given nested arc-annotated strings P and Q of lengths m and n, respectively, we can
solve the nested arc-preserving subsequence problem in time O(nm) and space O(m log |AQ|+ n).

5 Squeezing into Linear Space

We now show how to compress Γ sequences into a compact representation using O(m) bits. Plug-
ging the new representation into our algorithm the total space becomes O(n + m) as desired for
Theorem 1.

Our compression scheme for Γ sequences relies on the following key property of the values of γ.

Lemma 5 For any integers j1, j2, i1, i2, 1 ≤ j1 ≤ j2 ≤ m, 1 ≤ i1 ≤ i2 ≤ n,

j1 − 1 ≤ γ(j1, j2, i1, i2) ≤ γ(j1 + 1, j2, i1, i2) ≤ m

Proof. Adding another base in front of the substring P [j1 + 1, j2] cannot increase the endpoint of
an embedding of P [j1 + 1, j2] in Q and therefore γ(j1, j2, i1, i2) ≤ γ(j1 + 1, j2, i1, i2). Furthermore,
for any substring P [j1, j2] we can embed at most j2 − j1 bases and at least 0 bases in Q implying
the remaining inequalities. �

Let i1, i2 be indices in Q such that i1 ≤ i2 and consider the sequence

Γ(i1, i2) = γ(m,m, i1, i2), . . . , γ(1,m, i1, i2) = γm, . . . , γ1

By Lemma 5 we have that γm, . . . , γ1 is a non-increasing and non-negative sequence where γm
is either m or m − 1. We encode the sequence efficiently using two bit strings V and U defined
as follows. The string V is formed by the concatenation of m bit strings sm, . . . , s1, that is,
V = sm · sm−1 · · · s1, where · denotes concatenation. The string sm is the single bit sm = m− γm
and sk, 1 ≤ k < m, is given by

sk =







0 if γk+1 − γk = 0

1 · · · 1
︸ ︷︷ ︸

γk+1−γk times

if γk+1 − γk > 0

12

Let Dk denote the sum of bits in string sm · · · sk. We have that m − Dm = m − sm = γm and
inductively m − Dk = γk. The string U is the bit string of length |V | consisting of a 1 in each
position where a substring in V ends. Given V and U we can therefore uniquely recover γm, . . . , γ1.
Since γm, . . . , γ1 can decrease by at most m + 1 the total number of 1s in V is at most m + 1.
The total number of 0s is at most m and therefore |V | ≤ 2m + 1. Hence, our representation uses
O(m) bits. We can compress γm, . . . , γ1 into V and U in a single scan in O(m) time. Reversing
the process we can also decompress in O(m) time. Hence, we have the following result.

Lemma 6 We represent any Γ sequence using O(m) bits. Compression and decompression takes
O(m) time.

We modify our algorithm from Section 4 to take advantage of Lemma 6. Let (il, ir) be an internal
arc in AQ. Immediately before a recursive call to a light child (ikl , i

k
r) of (il, ir) we compress

the at most 3 Γ sequences maintained at (il, ir), namely Γ(ihl , i
h
r), where (ihl , i

h
r) is the heavy child,

Γ(ikr+1, ir), and Γ(ikr +1, ir−1). Immediately after returning from the recursive call we decompress
the sequences again.

The total number of compressions and decompressions is O(n). Hence, by Lemma 6 the addi-
tional time used is O(nm) and therefore the total running time of the algorithm remains O(nm).
The space for storing the O(log |AQ|) Γ sequences becomes O(m log |AQ|) = O(m log n) bits. Hence,
the total space is O(n+m). In conclusion, we have shown Theorem 1.

5.1 Avoiding Decompression

The above algorithm requires O(n) decompressions. We briefly describe how one can avoid these
decompressions by augmenting the representation of Γ sequences slightly. A rank/select index for
a bit string B supports the operations rank(B, k) that returns the number of 1s in B[1, k] and
select(B, k) that returns the position of the kth 1 in B. We can construct a rank/select index
in O(|B|) time that uses o(|B|) bits and supports both operations in constant time [20]. We add
a rank/select index to the bit strings V and U in our compressed representation. Since these use
o(m) bits this does not affect the space complexity. Let γm, . . . , γ1 be a Γ sequence compressed into
bit strings V and U augmented with a rank/select index. For any k, 1 ≤ k ≤ m we can compute
the element γk in constant time as

m− rank(V, select(U,m+ 1− k))

To see the correctness, first note that select(U,m + 1 − k) is end position of the m + 1 − kth
substring in V . Therefore, rank(V, select(U,m+1−k)) is the sum of the bits in the first m+1−k
substrings of V . This is Dk and since γk = m−Dk the computation returns γk. In summary, we
have the following result.

Lemma 7 We can represent any Γ sequence in O(m) bits while allowing constant time access to
any element.

The algorithm now only needs to compress Γ sequences once. Whenever, we need an element of a
compressed Γ sequence we extract it in constant time as above. Hence, the asymptotic complexity
of the algorithm remains the same.

13

References

[1] J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the similarity of two sequences
with nested arc annotations. Theor. Comput. Sci., 312(2-3):337–358, 2004.

[2] R. Backofen, S. H. H. Bernhart, C. Flamm, C. Fried, G. Fritzsch, J. Hackermüller, J. Hertel,
I. L. L. Hofacker, K. Missal, A. Mosig, S. J. J. Prohaska, D. Rose, P. F. F. Stadler, A. Tanzer,
S. Washietl, and S. Will. RNAs everywhere: genome-wide annotation of structured rnas. J.
Exp. Zoolog. B Mol. Dev. Evol., pages 1–25, 2007.

[3] R. Backofen, G. M. Landau, M. Möhl, D. Tsur, and O. Weimann. Fast RNA structure
alignment for crossing input structures. In Proc. 20th CPM, 2009.

[4] V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA strings. In
Proc. 6th CPM, LNCS, volume 937, pages 1–16, 1995.

[5] P. Bille and I. L. Gørtz. The tree inclusion problem: In optimal space and faster. In Proc.
32nd ICALP, LNCS, volume 3580, pages 66–77, 2005.

[6] G. Blin, G. Fertin, R. Rizzi, and S. Vialette. What makes theArc-Preserving Subsequence

Problem hard? Trans. Comput. Sys. Bio. II, pages 1–36, 2005. Announced at ICCS 2005.

[7] G. Blin and H. Touzet. How to compare arc-annotated sequences: The alignment hierarchy.
In Proc. 13th SPIRE, LNCS, pages 291–303, 2006.

[8] H.-J. Böckenhauer and D. Bongartz. Algorithmic Aspects of Bioinformatics (Natural Comput-
ing Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[9] W. Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms, 26:370–385, 1998.

[10] P. Damaschke. A remark on the subsequence problem for arc-annotated sequences with pair-
wise nested arcs. Inf. Process. Lett., 100(2):64–68, 2006.

[11] P. Evans. Algorithms and Complexity for Annotated Sequence Analysis. PhD thesis, University
of Victoria, 1999.

[12] A. Farris, G. Koelsch, G. Pruijn, W. van Venrooij, and J. Harley. Conserved features of Y
RNAs revealed by automated phylogenetic secondary structure analysis. Nucl. Acids Res.,
27(4):1070–1078, 1999.

[13] J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated sequences. ACM
Trans. Algorithms, 2(1):44–65, 2006. Announced at FSTTCS 2002.

[14] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J.
Comput., 13(2):338–355, 1984.

[15] K. Hellendoorn, P. Michiels, R. Buitenhuis, and C. Pleij. Protonatable hairpins are conserved
in the 5’-untranslated region of tymovirus RNAs. Nucl. Acids Res., 24(24):4910–4917, 1996.

[16] V. Juan, C. Crain, and C. Wilson. Evidence for evolutionarily conserved secondary structure
in the H19 tumor suppressor RNA. Nucl. Acids Res., 28(5):1221–1227, 2000.

14

[17] T. Kida. Faster pattern matching algorithm for arc-annotated sequences. In Federation over
the Web, LNCS, volume 3847, pages 25–39, 2006.

[18] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J. Comput.,
24:340–356, 1995.

[19] G. Lin, Z.-Z. Chen, T. Jiang, and J. Wen. The longest common subsequence problem for
sequences with nested arc annotations. J. Comput. Syst. Sci., 65(3):465–480, 2002.

[20] I. Munro. Tables. In Proc. 16th FSTTCS, LNCS, volume 1180, pages 37–42, 1996.

[21] S. W. M. Teunissen, M. J. M. Kruithof, A. D. Farris, J. B. Harley, W. J. v. Venrooij, and
G. J. M. Pruijn. Conserved features of Y RNAs: a comparison of experimentally derived
secondary structures. Nucl. Acids Res., 28(2):610–619, 2000.

[22] S. Vialette. On the computational complexity of 2-interval pattern matching problems. Theor.
Comput. Sci., 312(2-3):223–249, 2004. Announced at CPM 2002.

15

	1 Introduction
	1.1 Results
	1.2 Techniques
	1.3 Related Work
	1.4 Outline

	2 Preliminaries and Notation
	3 The Dynamic Programming Recurrence
	4 The Algorithm
	4.1 Heavy-Path Decomposition of Arc-Annotated Sequences
	4.2 Manipulating Sequences
	4.3 The Algorithm
	4.4 Analysis

	5 Squeezing into Linear Space
	5.1 Avoiding Decompression

