Abstract
Initially proposed by Formenti et al. for bi-infinite sequences, the Besicovitch and Weyl pseudo-distances express the viewpoint of an observer moving infinitely far from the grid, rather than staying close as in the product topology. We extend their definition to a more general setting, which includes the usual infinite hypercubic grids, and highlight some noteworthy properties. We use them to measure the “frequency” of occurrences of patterns in configurations, and consider the behavior of sliding block codes when configurations at pseudo-distance zero are identified. One of our aims is to get an alternative characterization of surjectivity for sliding block codes.
Mathematics Subject Classification 2000: 37B15, 68Q80.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blanchard, F., Formenti, E., Kůrka, P.: Cellular Automata in Cantor, Besicovitch, and Weyl Topological Spaces. Complex Systems 11(2), 107–123 (1999)
Capobianco, S.: Multidimensional Cellular Automata and Generalization of Fekete’s Lemma. Disc. Math. Theor. Comp. Sci. 10(3), 95–104 (2008)
Capobianco, S.: On the Induction Operation for Shift Subspaces and Cellular Automata as Presentations of Dynamical Systems. Inform. Comput. 207(11), 1169–1180 (2009)
Capobianco, S.: Some Notes on Besicovitch and Weyl Distances over Higher-Dimensional Configurations. In: de Oliveira, P.P.B., Kari, J. (eds.) Proceedings of Automata 2009: 15th International Workshop on Cellular Automata and Discrete Complex Systems, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil, Section 2: Short Papers, pp. 300–308 (2009)
Capobianco, S.: Surjunctivity for Cellular Automata in Besicovitch Spaces. J. Cell. Autom. 4(2), 89–98 (2009)
de la Harpe, P.: Topics in Geometric Group Theory. The University of Chicago Press (2000)
Fiorenzi, F.: Cellular Automata and Strongly Irreducible Shifts of Finite Type. Theor. Comp. Sci. 299, 477–493 (2003)
Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)
Namioka, I.: Følner’s Condition for Amenable Semi Groups. Math. Scand. 15, 18–28 (1962)
Toffoli, T., Capobianco, S., Mentrasti, P.: When—and How—Can a Cellular Automaton be Rewritten as a Lattice Gas? Theor. Comp. Sci. 403, 71–88 (2008)
Weiss, B.: Sofic Groups and Dynamical Systems. Sankhyā: Indian J. Stat. 62, 350–359 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Capobianco, S. (2010). On Pattern Density and Sliding Block Code Behavior for the Besicovitch and Weyl Pseudo-distances. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-11266-9_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11265-2
Online ISBN: 978-3-642-11266-9
eBook Packages: Computer ScienceComputer Science (R0)