Abstract
In this paper, we study the complexity and (in)approximability of the minimum label vehicle routing problem. Given a simple complete graph G = (V,E) containing a special vertex 0 called the depot and where the edges are colored (labeled), the minimum label k-vehicle routing problem consists in finding a k-vehicle routing E′, i.e. a collection of cycles of size at most k + 1 which all contain the depot 0, and such that every customer v ∈ V ∖ {0} is visited once, minimizing the number of colors used.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazgan, C., Hassin, R., Monnot, J.: Approximation Algorithms for Some Routing Problems. Discrete Applied Mathematics 146, 3–26 (2005)
Broersma, H., Li, X.: Spanning Trees with Many or Few Colors in Edge-Colored Graphs. Discussiones Mathematicae Graph Theory 17(2), 259–269 (1997)
Chang, R.-S., Leu, S.-J.: The Minimum Labeling Spanning Trees. Information Processing Letters 63(5), 277–282 (1997)
Couetoux, B., Gourvès, L., Monnot, J., Telelis, O.: On Labeled Traveling Salesman Problems. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 776–787. Springer, Heidelberg (2008)
Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, CA (1979)
Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and Heuristics for Capacitated Routing Problems. Mathematics of Operations Research 10, 527–542 (1985)
Haimovich, M., Rinnooy Kan, A.H.G., Stougie, L.: Vehicle Routing Methods and Studies. In: Golden, A. (ed.) Analysis of Heuristics for Vehicle Routing Problems, pp. 47–61. Elsevier, Amsterdam (1988)
Hassin, R., Monnot, J., Segev, D.: Approximation Algorithms and Hardness Results for Labeled Connectivity Problems. J. of Combinatorial Optimization 14(4), 437–453 (2007)
Kirkpatrick, D.G., Hell, P.: On the Completeness of a Generalized Matching Problem. In: Proceedings of STOC 1978, pp. 240–245 (1978)
Monnot, J.: The Labeled Perfect Matching in Bipartite Graphs. Information Processing Letters 96, 81–88 (2005)
Monnot, J., Toulouse, S.: The Path Partition Problem and Related Problems in Bipartite Graphs. Operations Research Letters 35, 677–684 (2007)
Van-Nes, R.: Design of Multimodal Transport Networks: A Hierarchical Approach. PhD Thesis. Delft University Press (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatti, H., Gourvès, L., Monnot, J. (2010). On a Labeled Vehicle Routing Problem. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-11266-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11265-2
Online ISBN: 978-3-642-11266-9
eBook Packages: Computer ScienceComputer Science (R0)