Abstract
In this paper we deal with a task to learn a general user model from user ratings of a small set of objects. This general model is used to recommend top-k objects to the user. We consider several (also some new) alternatives of learning local preferences and several alternatives of aggregation (with or without 2CP-regression). The main contributions are evaluation of experiments on our prototype tool PrefWork with respect to several satisfaction measures and the proposal of method Peak for normalisation of numerical attributes. Our main objective is to keep the number of sample data which the user has to rate reasonable small.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eckhardt, A.: Prefwork – a Framework for User Preference Learning Methods Testing. In: Vojtas, P. (ed.) Proceedings of ITAT 2009 Information Technologies - Applications and Theory, Slovakia, CEUR-WS.org (to appear, 2009)
Joachims, T.: Optimizing Search Engines Using Clickthrough Data. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM Press, New York (2002)
Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately Interpreting Clickthrough Data as Implicit Feedback. In: SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 154–161. ACM, New York (2005)
Cao-Van, K.: Supervised Ranking, from Semantics to Algorithms. Ph.D. Dissertation, Ghent University (2003)
Apolloni, B., Zamponi, G., Zanaboni, A.M.: Learning Fuzzy Decision Trees. Neural Networks 11(5), 885–895 (1998)
Holland, S., Ester, M., Kiessling, W.: Preference Mining: A Novel Approach on Mining User Preferences for Personalized Applications. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 204–216. Springer, Heidelberg (2003)
Jung, S.Y., Hong, J.H., Kim, T.S.: A Statistical Model for User Preference. Knowledge and Data Engineering. IEEE Transactions on Knowledge and Data Engineering 17(6), 834–843 (2005)
Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Cp-Nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. Journal of Artificial Intelligence Research 21 (2004)
Lang, J., Mengin, J.: The Complexity of Learning Separable Ceteris Paribus Preferences. In: International Joint Conference on Artificial Intelligence (2009)
Koriche, F., Zanuttini, B.: Learning Conditional Preference Networks with Queries. In: Boutilier, C. (ed.) Proc. 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1930–1935 (2009)
Chevaleyre, Y., Koriche, F., Lang, J., Mengin, J., Zanuttini, B.: Learning Ordinal Preferences on Multiattribute Domains: the Case of Cp-Nets. In: Fürnkranz, J., Hüllermeier, E. (eds.) To appear in the Book Preference Learning. Springer, Heidelberg
Middleton, S.E., Shadbolt, N., Roure, D.D.: Capturing Interest through Inference and Visualization: Ontological User Profiling in Recommender Systems. In: K-CAP 2003 (2003)
de Baets, B., Fodor, J.C.: Twenty Years of Fuzzy Preference Structures (1978–1997). Decisions in Economics and Finance 20, 45–66 (1997)
Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In: Proceedings of Twentieth ACM Symposium on Principles of Database Systems (PODS 2001), pp. 102–113. ACM, New York (2001)
Clemen, R.T.: Making Hard Decisions: an Introduction to Decision Analysis. Duxbury Press, Belmont (1996)
Eckhardt, A., Vojtáš, P.: How to Learn Fuzzy User Preferences with Variable Objectives. In: Proceedings of 2009 IFSA World Congress/EUSFLAT Conference, Lisbon, Portugal, July 2009, pp. 938–943 (2009)
Eckhardt, A., Vojtáš, P.: Considering Data-Mining Techniques in User Preference Learning. In: 2008 International Workshop on Web Information Retrieval Support Systems, pp. 33–36 (2008)
Eckhardt, A.: Inductive Models of User Preferences for Semantic Web. In: Pokorný, J., Snášel, V., Richta, K. (eds.) DATESO 2007. CEUR Workshop Proceedings, vol. 235, pp. 108–119. Matfyz Press, Praha (2007)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Eckhardt, A., Vojtáš, P. (2010). Learning User Preferences for 2CP-Regression for a Recommender System. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-11266-9_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11265-2
Online ISBN: 978-3-642-11266-9
eBook Packages: Computer ScienceComputer Science (R0)