
Fast and Compact Prefix Codes?

Travis Gagie1,2, Gonzalo Navarro2, and Yakov Nekrich3

1 Research Group in Genome Informatics
Bielefeld University

travis.gagie@gmail.com

2 Department of Computer Science
University of Chile

gnavarro@dcc.uchile.cl

3 Department of Computer Science
University of Bonn

yasha@cs.uni-bonn.de

Abstract. It is well-known that, given a probability distribution over
n characters, in the worst case it takes Θ(n log n) bits to store a prefix
code with minimum expected codeword length. However, in this paper
we first show that, for any ε with 0 < ε < 1/2 and 1/ε = O(polylog(n)), it
takes O(n log log(1/ε)) bits to store a prefix code with expected codeword
length within an additive ε of the minimum. We then show that, for any
constant c > 1, it takes O

(
n1/c log n

)
bits to store a prefix code with

expected codeword length at most c times the minimum. In both cases,
our data structures allow us to encode and decode any character in O(1)
time.

1 Introduction

Compression is most important when space is in short supply, so popular com-
pressors are usually heavily engineered to reduce their space usage. Theory has
lagged behind practice in this area, however, and there remain basic open ques-
tions about the space needed for even the simplest kinds of compression. For
example, while compression with prefix codes is familiar to any student of in-
formation theory, very little has been proven about compression of prefix codes.
Suppose we are given a probability distribution P over an alphabet of n char-
acters. Until fairly recently, the only general bounds known seem to have been,
first, that it takes Θ(n log n) bits in the worst case to store a prefix code with
minimum expected codeword length and, second, that O(n) bit suffice to store
a prefix code with expected codeword length within 1 of the minimum.

In 1998 Adler and Maggs [1] showed it generally takes more than (9/40)n1/(20c)

log n bits to store a prefix code with expected codeword length at most cH(P ),

? Funded in part by Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, Chile.



2 Travis Gagie, Gonzalo Navarro, Yakov Nekrich

where H(P ) is P ’s entropy and a lower bound on the expected codeword length.
(In this paper we consider only binary codes, and by log we always mean log2.)
In 2006 Gagie [6, 7] (see also [8]) showed that, for any constant c ≥ 1, it takes
O

(
n1/c log n

)
bits to store a prefix code with expected codeword length at most

cH(P ) + 2. He also showed his upper bound is nearly optimal because, for any
positive constant ε, we cannot always store a prefix code with expected code-
word length at most cH(P )+o(log n) in O

(
n1/c−ε

)
bits. Gagie proved his upper

bound by describing a data structure that stores a prefix code with the prescribed
expected codeword length in the prescribed space and allows us to encode and
decode any character in time at most proportional to its codeword’s length. This
data structure has three obvious defects: when c = 1, it is as big as a Huffman
tree, whereas its redundancy guarantee can be obtained with just O(n) bits [10];
when H(P ) is small, a possible additive increase of 2 in the expected codeword
length may be prohibitive; and it is slower than the state of the art.

In this paper we answer several open questions related to efficient represen-
tation of codes. First, in Section 3 we show that, for any ε with 0 < ε < 1/2
and 1/ε = O(polylog(n)), it takes O(n log log(1/ε)) bits to store a prefix code
with expected codeword length within an additive ε of the minimum. Thus, if we
can tolerate an additive increase of, say, 0.01 in the expected codeword length,
then we can store a prefix code using only O(1) bits per character. Second, in
Section 4 we show that, for any constant c > 1, it takes O

(
n1/c log n

)
bits to

store a prefix code with expected codeword length at most c times the minimum,
with no extra additive increase. Thus, if we can tolerate a multiplicative increase
of, say, 2.01, then we can store a prefix code in O(

√
n) bits. In both cases, our

data structures allow us to encode and decode any character in O(1) time on a
unit-cost word RAM.

2 Related work

A simple pointer-based implementation of a Huffman tree takes O(n log n) bits
and it is not difficult to show this is an optimal upper bound for storing a prefix
code with minimum expected codeword length. For example, suppose we are
given a permutation π over n characters. Let P be the probability distribution
that assigns probability 1/2i to the π(i)th character, for 1 ≤ i < n, and proba-
bility 1/2n−1 to the π(n)th character. Since P is dyadic, every prefix code with
minimum expected codeword length assigns a codeword of length i to the π(i)th
character, for 1 ≤ i < n, and a codeword of length n−1 to the π(n)th character.
Therefore, given any prefix code with minimum expected codeword length and a
bit indicating whether π(n−1) < π(n), we can find π. Since there are n! choices
for π, in the worst case it takes Ω(log n!) = Ω(n log n) bits to store a prefix code
with minimum expected codeword length.

Considering the argument above, it is natural to ask whether the same lower
bound holds for probability distributions that are not so skewed, and the answer
is ‘no’. A prefix code is canonical [19] if the first codeword is a string of 0s and
any other codeword can be obtained from its predecessor by adding 1, viewing



Fast and Compact Prefix Codes 3

its predecessor as a binary number, and appending some number of 0s. (See,
e.g., [16, 14] for more recent work on canonical codes.) Given any prefix code,
without changing the length of the codeword assigned to any character, we can
put the code into canonical form by just exchanging left and right siblings in
the code-tree. Moreover, we can reassign the codewords such that, if a character
is lexicographically the jth with a codeword of length `, then it is assigned the
jth consecutive codeword of length `. It is clear that it is sufficient to store the
codeword length of each character to be able to reconstruct such a code, and
thus the code can be represented in O(n log L) bits, where L is the length of the
longest codeword.

The above gives us a finer upper bound. For example, Katona and Nemetz [13]
showed that, if a character has probability p, then any Huffman code assigns it a
codeword of length at most about log(1/p)/ log φ, where φ ≈ 1.618 is the golden
ratio, and thus L is at most about 1.44 log(1/pmin), where pmin is the smallest
probability in P . Alternatively, one can enforce a value for L and pay a price
in terms of expected codeword length. Milidiú and Laber [15] showed how, for
any L > dlog ne, we can build a prefix code with maximum codeword length at
most L and expected codeword length within 1/φL−dlog(n+dlog ne−L)e−1 of the
minimum. Their algorithm works by building a Huffman tree T1; removing all
the subtrees rooted at depth greater than L; building a complete binary tree T2

of height h whose leaves are those removed from T1; finding the node v at depth
L−h−1 in T1 whose subtree T3’s leaves are labelled by characters with minimum
total probability (which they showed is at most 1/φL−dlog(n+dlog ne−L)e−1); and
replacing v by a new node whose subtrees are T2 and T3.

A simple upper bound for storing a prefix code with expected codeword
length within a constant of the minimum, follows from Gilbert and Moore’s
proof [10] that we can build an alphabetic prefix code with expected codeword
length less than H(P ) + 2 and, thus, within 2 of the minimum. Moreover, in
an optimal alphabetic prefix code, the expected codeword length is within 1 of
the minimum [18, 20] which, in turn, is within 1 of the entropy H(P ). In an
alphabetic prefix code, the lexicographic order of the codewords is the same as
that of the characters, so we need store only the code-tree and not the assignment
of codewords to characters. If we store the code-tree in a succinct data structure
due to Munro and Raman [17], then it takesO(n) bits and encoding and decoding
any character takes time at most proportional to its codeword length. This can
be improved to O(1) by using table lookup, but doing so may worsen the space
bound unless we also restrict the maximum codeword length, which may in turn
increase the expected codeword length.

The code-tree of a canonical code can be stored in just O
(
L2

)
bits: By its def-

inition, we can reconstruct the whole canonical tree given only the first codeword
of each length. Unfortunately, Gagie’s lower bound [7] suggests we generally can-
not combine results concerning canonical codes with those concerning alphabetic
prefix codes.

Constant-time encoding and decoding using canonical code-trees is simple.
Notice that if two codewords have the same length, then the difference between



4 Travis Gagie, Gonzalo Navarro, Yakov Nekrich

their ranks in the code is the same as the difference between the codewords them-
selves, viewed as binary numbers. Suppose we build an O

(
L2

)
-bit array A and

a dictionary D supporting predecessor queries, each storing the first codeword
of each length. Given the length of a character’s codeword and its rank among
codewords of the same length (henceforth called its offset), we can find the ac-
tual codeword by retrieving the first codeword of that length from A and then,
viewing that first codeword as a binary number, adding the offset minus 1. Given
a binary string starting with a codeword, we can find that codeword’s length and
offset by retrieving the string’s predecessor in D, which is the first codeword of
the same length; truncating the string to the same length in order to obtain the
actual codeword; and subtracting the first codeword from the actual codeword,
viewing both as binary numbers, to obtain the offset minus 1. (If D supports
numeric predecessor queries instead of lexicographic predecessor queries, then
we store the first codewords with enough 0s appended to each that they are
all the same length, and store their original lengths as auxiliary information.)
Assuming it takes O(1) time to compute the length and offset of any character’s
codeword given that character’s index in the alphabet, encoding any character
takes O(1) time. Assuming it takes O(1) time to compute any character’s index
in the alphabet given its codeword’s length and offset, decoding takes within a
constant factor of the time needed to perform a predecessor query on D. For
simplicity, in this paper we consider the number used to represent a character in
the machine’s memory to be that character’s index in the alphabet, so finding
the index is the same as finding the character itself.

In a recent paper on adaptive prefix coding, Gagie and Nekrich [9] (see
also [12]) pointed out that if L = O(w), where w is the length of a machine
word, then we can implement D as an O

(
w2

)
-bit dictionary data structure due

to Fredman and Willard [5] such that predecessor queries take O(1) time. (We
note that Beame and Fich’s well-known lower bound [2] on predecessor queries
does not apply when the size of the dictionary is proportional to the length of a
word.) This seems a reasonable assumption since, for any string of length m with
log m = O(w), if P is the probability distribution that assigns to each character
probability proportional to its frequency in the string, then the smallest positive
probability in P is at least 1/m; therefore, the maximum codeword length in
either a Huffman code or a Shannon code for P is O(w). Gagie and Nekrich
used O(n log n)-bit arrays to compute the length and offset of any character’s
codeword given that character’s index in the alphabet, and vice versa, and thus
achieved O(1) time for both encoding and decoding.

A technique we will use to obtain our first result, presented in section 3, is the
wavelet tree of Grossi et al. [11], and more precisely the multiary variant due to
Ferragina et al. [3]. The latter represents a sequence S[1, n] over an alphabet Σ of
size σ such that the following operations can be carried out in O

(
log σ

log log n

)
time

on the RAM model with a computer word of length Ω(log n): (1) Given i, retrieve
S[i]; (2) given i and a ∈ Σ, compute ranka(S, i), the number of occurrences of a
in S[1, i]; (3) given j and a ∈ Σ, compute selecta(S, j), the position in S of the j-
th occurrence of a. The wavelet tree requires nH0(S)+O

(
n log log n

logσ n

)
bits of space,



Fast and Compact Prefix Codes 5

where H0(S) ≤ log σ is the empirical zero-order entropy of S, defined as H0(S) =
H({occ(a, S) /n}a∈σ), where occ(a, S) is the number of occurrences of a in S.
Thus nH0(S) is a lower bound to the output size of any zero-order compressor
applied to S. It will be useful to write H0(S) =

∑
a∈σ

occ(a,S)
n log n

occ(a,S) .
Our second result is based on constructing a length-restricted canonical code

with maximum codeword length L. We divide all symbols into “probable” sym-
bols that are assigned codewords of length at most L/c + 2 and “improbable”
symbols that are assigned codewords of length greater than L/c + 2. It will be
shown in section 4 that all “probable” symbols can be encoded and decoded in
O(1) time using O(n1/c log n) bits. We replace all codewords of length at least
L/c + 3 with codewords of length L, so that the “improbable” symbols can be
encoded and decoded in constant time but we do not have to store the new
codewords explicitly.

3 Additive increase in expected codeword length

In this section we exchange a small additive penalty over the optimal prefix code
for a space-efficient representation of the encoding, which in addition enables
encode/decode operations in constant time.

It follows from Milidiú and Laber’s bound [15] that, for any ε with 0 <
ε < 1/2, there is always a prefix code with maximum codeword length L =
dlog ne+ dlogφ(1/ε)e+ 1 and expected codeword length within an additive

1
φL−dlog(n+dlog ne−L)e−1

≤ 1
φL−dlog ne−1

≤ 1
φlogφ(1/ε)

= ε

of the minimum. The techniques described in the previous section give a way
to store such a code in O

(
L2 + n log L

)
bits, yet it is not immediately obvious

how to do constant-time encoding and decoding. Alternatively, we can achieve
constant-time encoding and decoding using O

(
w2 + n log n

)
bits for the code-

tree, if L = O(w).
To achieve constant encoding and decoding times without ruining the space,

we use multiary wavelet trees. We use a canonical code, and sort the characters
(i.e., leaves) alphabetically within each depth, as described in the previous sec-
tion. Let S[1, n] be the sequence of depths in the canonical code-tree, so that
S[a] (1 ≤ a ≤ n) is the depth of the character a. Now, the depth and off-
set of any a ∈ Σ is easily computed from the wavelet tree of S: the depth is
just S[a], while the offset is rankS[a](S, a). Inversely, given a depth d and an
offset o, the corresponding character is selectd(S, o). The O

(
w2

)
-bit data struc-

ture of Gagie and Nekrich [9] converts in constant time pairs (depth,offset) into
codes and vice versa (if L = O(w)), whereas the multiary wavelet tree on S

requires n log L + O
(

n log log n
logL n

)
bits of space and completes encoding/decoding

in time O
(

log L
log log n

)
. Under the restriction 1/ε = O(polylog(n)), the space is

O
(
w2

)
+n log L+ o(n) and the time is O(1). This is the key to the result of this

section.



6 Travis Gagie, Gonzalo Navarro, Yakov Nekrich

Theorem 1. For any ε with 0 < ε < 1/2 and 1/ε = O(polylog(n)), and under
the RAM model with computer word size w, so that the text to encode is of
length 2O(w), we can store a prefix code with expected codeword length within
an additive term ε of the minimum, using O

(
w2 + n log log(1/ε)

)
bits, such that

encoding and decoding any character takes O(1) time.

Proof. The data structure we have described achieves the given time bounds if
we assume the text to encode is of length m = 2O(w), as usual under the RAM
model of computation, and thus L = O(w) enables constant-time encoding and
decoding [9].

As for the space, we have shown it is O
(
w2

)
+ n log L + o(n). To achieve the

claim of the theorem we show that H0(S) is at most log(L−dlog ne+1)+O(1),
so we can store S in O(n log(L− log n + 1) + n) = O(n log log(1/ε)) bits.

To see this, consider S as two interleaved subsequences, S1 and S2, of length
n1 and n2, with S1 containing those lengths less than or equal to dlog ne and S2

containing those greater. Thus nH0(S) ≤ n1H0(S1) + n2H0(S2) + n.
Since there are at most 2` codewords of length `, assume we complete S1

with spurious symbols so that it has exactly 2` occurrences of symbol `. This
completion cannot decrease n1H0(S1) =

∑
1≤`≤dlog ne occ(`, S1) log n1

occ(`,S1)
, as

increasing some occ(`, S1) to occ(`, S1) + 1 produces a difference of f(n1) −
f(occ(`, S1)) ≥ 0, where f(x) = (x + 1) log(x + 1)− x log x is increasing. Hence
we can assume S1 contains exactly 2` occurrences of symbol 1 ≤ ` ≤ dlog ne;
straightforward calculation then shows that n1H0(S1) = O(n1).

On the other hand, S2 contains at most L − dlog ne distinct values, so
H0(S2) ≤ log(L − dlog ne), unless L = dlog ne, in which case S2 is empty and
n2H0(S2) = 0. Thus n2H0(S2) ≤ n2 log(dlogφ(1/ε)e+ 1) = O(n2 log log(1/ε)).

Combining both bounds, we get H0(S) = O(1 + log log(1/ε)) and the theo-
rem holds. ut

In other words, under mild assumptions, we can store a code usingO(n log log(1/ε))
bits at the price of increasing the average codeword length by ε, and in addition
have constant-time encoding and decoding. For constant ε, this means that the
code uses just O(n) bits at the price of an arbitrarily small constant additive
penalty over the shortest possible prefix code.

4 Multiplicative increase in expected codeword length

In this section we focus on a multiplicative rather than an additive penalty over
the optimal prefix code, in order to achieve a sublinear-sized representation of
the encoding, which still enables constant-time encoding and decoding.

Our main idea is to divide the alphabet into probable and improbable char-
acters and to store information about only the probable ones. Given a constant
c > 1, we use Milidiú and Laber’s algorithm [15] to build a prefix code with
maximum codeword length L = dlog ne+ d1/(c− 1)e+ 1. We call a character’s
codeword short if it has length at most L/c + 2, and long otherwise. Notice
there are at most 2L/c+3 − 1 = O

(
n1/c

)
characters with short codewords. Also,



Fast and Compact Prefix Codes 7

although applying Milidiú and Laber’s algorithm may cause some exceptions,
characters with short codewords are usually more probable than characters with
long ones. We will hereafter call infrequent characters those encoded with long
codewords in the code of Milidiú and Laber.

We transform this length-restricted prefix code into a canonical code as de-
scribed in Section 2; specifically, we sort the characters lexicographically within
each depth. We use a dictionary data structure F due to Fredman, Komlós and
Szemerédi [4] to store the indices of the characters with short codewords. This
data structure takes O

(
n1/c log n

)
bits and supports membership queries in O(1)

time, with successful queries returning the target character’s codeword. We also
build bL/cc+ 2 arrays that together store the indices of all the characters with
short codewords; for 1 ≤ ` ≤ bL/cc + 2, the `th array stores the indices of
the characters with codewords of length `, in lexicographic order by codeword.
Again, we store the first codeword of each length in O

(
w2

)
bits overall, following

Gagie and Nekrich [9], such that it takes O(1) time to compute any codeword
given its length and offset, and vice versa. With these data structures, we can
encode and decode any character with a short codeword in O(1) time. To en-
code, we perform a membership query on the dictionary to check whether the
character has a short codeword; if it does, we receive the codeword itself as satel-
lite information returned by the query. To decode, we first find the codeword’s
length ` and offset j in O(1) time as described in Section 2. Since the codeword
is short, ` ≤ bL/cc+ 2 and the character’s index is stored in the jth cell of the
`th array. These data structures use a total of O

(
w2 + n1/c log n

)
bits of space.

We replace each long codeword with new codewords: instead of a long code-
word α of length `, we insert 2L+1−` new codewords α · s, where · denotes
concatenation and s is an arbitrary binary string of length L + 1 − `. Figure 1
shows an example. Since c > 1, we have n1/c < n/2 for sufficiently large n, so
we can assume without loss of generality that there are fewer than n/2 short
codewords; hence, the number of long codewords is at least n/2. Since every
long codeword is replaced by at least two new codewords, the total number of
new codewords is at least n. Since new codewords are obtained by extending
all codewords of length ` > L/c + 1 in a canonical code, all new codewords are
binary representations of consecutive integers. Therefore the i-th new codeword
equals to αf + i − 1, where αf is the first new codeword. If a is an infrequent
character, we encode it with the a-th new codeword, αf + a − 1. To encode a
character a, we check whether a belongs to the dictionary F . If a ∈ F , then we
output the codeword for a. Otherwise we encode a as αf + a − 1. To decode a
codeword α, we read its prefix bitstring sα of length L+1 and compare sα with
αf . If sα ≥ αf , then α = sα is the codeword for sα − αf + 1. Otherwise, the
codeword length of the next codeword α is at most L/c+1 and α can be decoded
as described in the previous paragraph. Notice we do not need to store the new
codewords we just described, so the total space used is still O

(
w2 + n1/c log n

)
bits.

Theorem 2. For any constant c > 1, under the RAM model with computer word
size w, so that the text to encode is of length 2O(w), we can store a prefix code



8 Travis Gagie, Gonzalo Navarro, Yakov Nekrich

1100000 + char − 1

c
i
a
h
m
p

00
010
011
1000
1001
1010
1011 a

b

c

d

e

f g

h

i

j

k

l

m

n o

p

b d e f g k l n o

b
d
e
f
g
k
l
n
o

j

Fig. 1. An example with n = 16 and c = 3. The tree consisting of the nodes drawn as
large circles and squares (in black) is the result of applying the algorithm of Milidiú
and Laber on the original prefix code. Now, we set L = 6 according to our formula,
and declare short the codeword lengths up to bL/cc + 2 = 4. Short codewords — i.e.,
those above the dashed line — are stored unaltered in a dictionary (in blue). Longer
codewords — i.e., those below the dashed line — are changed: All are extended up to
length L+1 = 7 and reassigned a code according to their values in the contiguous slots
of length 7 (in red).

with expected codeword length within c times the minimum in O
(
w2 + n1/c log n

)
bits, such that encoding and decoding any character takes O(1) time.

Proof. The structure described throughout the section achieves the promised
time and space bounds. We analyze now the expected codeword length.

By analysis of the algorithm by Milidiú and Laber [15] we can see that
the codeword length of a character in their length-restricted code exceeds the
codeword length of the same character in an optimal code by at most 1, and
only when the codeword length in the optimal code is at least L− dlog ne − 1 =
d1/(c − 1)e. Hence, the codeword length of a character encoded with a short
codeword exceeds the codeword length of the same character in an optimal code
by a factor of at most d1/(c−1)e+1

d1/(c−1)e ≤ c. Every infrequent character is encoded with
a codeword of length L+1. Since the codeword length of an infrequent character
in the length-restricted code is more than L/c + 2, its length in an optimal code
is more than L/c + 1. Hence, the codeword length of a long character in our



Fast and Compact Prefix Codes 9

code is at most L+1
L/c+1 < c times greater than the codeword length of the same

character in an optimal code. Hence, the average codeword length for our code
is less than c times the optimal one. ut

Again, under mild assumptions, this means that we can store a code with ex-
pected length within c times the optimum, in O

(
n1/c log n

)
bits and allowing

constant-time encoding and decoding.

References

1. M. Adler and B. M. Maggs. Protocols for asymmetric communication channels.
Journal of Computer and System Sciences, 63(4):573–596, 2001.

2. P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences, 65(1):38–72, 2002.

3. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2),
2007. Article 20.

4. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538–544, 1984.

5. M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.

6. T. Gagie. Compressing probability distributions. Information Processing Letters,
97(4):133–137, 2006.

7. T. Gagie. Large alphabets and incompressibility. Information Processing Letters,
99(6):246–251, 2006.

8. T. Gagie. Dynamic asymmetric communication. Information Processing Letters,
108(6):352–355, 2008.

9. T. Gagie and Y. Nekrich. Worst-case optimal adaptive prefix coding. In Proceedings
of the Algorithms and Data Structures Symposium (WADS), pages 315–326, 2009.

10. E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell System
Technical Journal, 38:933–967, 1959.

11. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proceedings of the 14th Symposium on Discrete Algorithms (SODA), pages 841–
850, 2003.

12. M. Karpinski and Y. Nekrich. A fast algorithm for adaptive prefix coding. Algo-
rithmica, 55(1):29–41, 2009.

13. G. O. H. Katona and T. O. H. Nemetz. Huffman codes and self-information. IEEE
Transactions on Information Theory, 22(3):337–340, 1976.

14. S. T. Klein. Skeleton trees for the efficient decoding of Huffman encoded texts.
Information Retrieval, 3(4):315–328, 2000.

15. R. L. Milidiú and E. S. Laber. Bounding the inefficiency of length-restricted prefix
codes. Algorithmica, 31(4):513–529, 2001.

16. A. Moffat and A. Turpin. On the implementation of minimum-redundancy prefix
codes. IEEE Transactions on Communications, 45(10):1200–1207, 1997.

17. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and
static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

18. N. Nakatsu. Bounds on the redundancy of binary alphabetical codes. IEEE Trans-
actions on Information Theory, 37(4):1225–1229, 1991.



10 Travis Gagie, Gonzalo Navarro, Yakov Nekrich

19. E. S. Schwarz and B. Kallick. Generating a canonical prefix encoding. Communi-
cations of the ACM, 7(3):166–169, 1964.

20. D. Sheinwald. On binary alphabetic codes. In Proceedings of the Data Compression
Conference (DCC), pages 112–121, 1992.


