Abstract
It is well-known that, given a probability distribution over n characters, in the worst case it takes Θ(n logn) bits to store a prefix code with minimum expected codeword length. However, in this paper we first show that, for any ε with 0 < ε< 1/2 and 1 /ε = O(polylog(n)), it takes O(n loglog(1 / ε)) bits to store a prefix code with expected codeword length within an additive ε of the minimum. We then show that, for any constant c > 1, it takes O(n 1 / c logn) bits to store a prefix code with expected codeword length at most c times the minimum. In both cases, our data structures allow us to encode and decode any character in O(1) time.
Funded in part by Millennium Institute for Cell Dynamics and Biotechnology (ICDB), Grant ICM P05-001-F, Mideplan, Chile.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adler, M., Maggs, B.M.: Protocols for Asymmetric Communication Channels. Journal of Computer and System Sciences 63(4), 573–596 (2001)
Beame, P., Fich, F.E.: Optimal Bounds for the Predecessor Problem and Related Problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)
Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed Representations of Sequences and Full-Text Indexes. ACM Transactions on Algorithms 3(2), Article 20 (2007)
Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a Sparse Table with O1 Worst Case Access Time. Journal of the ACM 31(3), 538–544 (1984)
Fredman, M.L., Willard, D.E.: Surpassing the Information Theoretic Bound with Fusion Trees. Journal of Computer and System Sciences 47(3), 424–436 (1993)
Gagie, T.: Compressing Probability Distributions. Information Processing Letters 97(4), 133–137 (2006)
Gagie, T.: Large alphabets and incompressibility. Information Processing Letters 99(6), 246–251 (2006)
Gagie, T.: Dynamic asymmetric communication. Information Processing Letters 108(6), 352–355 (2008)
Gagie, T., Nekrich, Y.: Worst-Case Optimal Adaptive Prefix Coding. In: Proceedings of the Algorithms and Data Structures Symposium (WADS), pp. 315–326 (2009)
Gilbert, E.N., Moore, E.F.: Variable-Length Binary Encodings. Bell System Technical Journal 38, 933–967 (1959)
Grossi, R., Gupta, A., Vitter, J.: High-Order Entropy-Compressed Text Indexes. In: Proceedings of the 14th Symposium on Discrete Algorithms (SODA), pp. 841–850 (2003)
Karpinski, M., Nekrich, Y.: A Fast Algorithm for Adaptive Prefix Coding. Algorithmica 55(1), 29–41 (2009)
Katona, G.O.H., Nemetz, T.O.H.: Huffman Codes and Self-Information. IEEE Transactions on Information Theory 22(3), 337–340 (1976)
Klein, S.T.: Skeleton Trees for the Efficient Decoding of Huffman Encoded Texts. Information Retrieval 3(4), 315–328 (2000)
Milidiú, R.L., Laber, E.S.: Bounding the Inefficiency of Length-Restricted Prefix Codes. Algorithmica 31(4), 513–529 (2001)
Moffat, A., Turpin, A.: On the Implementation of Minimum-Redundancy Prefix Codes. IEEE Transactions on Communications 45(10), 1200–1207 (1997)
Munro, J.I., Raman, V.: Succinct Representation of Balanced Parentheses and Static Trees. SIAM Journal on Computing 31(3), 762–776 (2001)
Nakatsu, N.: Bounds on the Redundancy of Binary Alphabetical Codes. IEEE Transactions on Information Theory 37(4), 1225–1229 (1991)
Schwarz, E.S., Kallick, B.: Generating a Canonical Prefix Encoding. Communications of the ACM 7(3), 166–169 (1964)
Sheinwald, D.: On Binary Alphabetic Codes. In: Proceedings of the Data Compression Conference (DCC), pp. 112–121 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gagie, T., Navarro, G., Nekrich, Y. (2010). Fast and Compact Prefix Codes. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-11266-9_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11265-2
Online ISBN: 978-3-642-11266-9
eBook Packages: Computer ScienceComputer Science (R0)