Skip to main content

The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension

  • Conference paper
Parameterized and Exact Computation (IWPEC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5917))

Included in the following conference series:

Abstract

We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension d:

i) Given n points in ℝd, compute their minimum enclosing cylinder.

ii) Given two n-point sets in ℝd, decide whether they can be separated by two hyperplanes.

iii) Given a system of n linear inequalities with d variables, find a maximum size feasible subsystem.

We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension d. Our reductions also give a n Ω(d)-time lower bound (under the Exponential Time Hypothesis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armaldi, E., Kann, V.: The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science 147, 181–210 (1995)

    Article  MathSciNet  Google Scholar 

  2. Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38(3), 899–921 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2), 317–331 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bremner, D., Chen, D., Iacono, J., Langerman, S., Morin, P.: Output-sensitive algorithms for tukey depth and related problems. Statistics and Computing 18(3), 259–266 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proc. 34th Annual ACM Symposium on Theory of Computing, pp. 250–257 (2002)

    Google Scholar 

  6. Cabello, S., Giannopoulos, P., Knauer, C., Marx, D., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. ACM Transactions on Algorithms (to appear, 2009)

    Google Scholar 

  7. Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. In: Proc. 19th Ann. ACM-SIAM Sympos. Discrete Algorithms, pp. 836–843 (2008)

    Google Scholar 

  8. Chan, T.M.: A (slightly) faster algorithm for Klee’s measure problem. In: Proc. 24th Annual Symposium on Computational Geometry, pp. 94–100 (2008)

    Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)

    Google Scholar 

  10. Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geometric problems. Computer Journal 51(3), 372–384 (2008)

    Article  Google Scholar 

  11. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Langerman, S., Morin, P.: Covering things with things. Discrete & Computational Geometry 33(4), 717–729 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Megiddo, N.: On the complexity of polyhedral separability. Discrete & Computational Geometry 3, 325–337 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Megiddo, N.: On the complexity of some geometric problems in unbounded dimension. J. Symb. Comput. 10, 327–334 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Varadarajan, K., Venkatesh, S., Ye, Y., Zhang, J.: Approximating the radii of point sets. SIAM J. Comput. 36(6), 1764–1776 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giannopoulos, P., Knauer, C., Rote, G. (2009). The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11269-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11268-3

  • Online ISBN: 978-3-642-11269-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics