Abstract
We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension d:
i) Given n points in ℝd, compute their minimum enclosing cylinder.
ii) Given two n-point sets in ℝd, decide whether they can be separated by two hyperplanes.
iii) Given a system of n linear inequalities with d variables, find a maximum size feasible subsystem.
We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension d. Our reductions also give a n Ω(d)-time lower bound (under the Exponential Time Hypothesis).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armaldi, E., Kann, V.: The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science 147, 181–210 (1995)
Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38(3), 899–921 (2008)
Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2), 317–331 (1997)
Bremner, D., Chen, D., Iacono, J., Langerman, S., Morin, P.: Output-sensitive algorithms for tukey depth and related problems. Statistics and Computing 18(3), 259–266 (2008)
Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proc. 34th Annual ACM Symposium on Theory of Computing, pp. 250–257 (2002)
Cabello, S., Giannopoulos, P., Knauer, C., Marx, D., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. ACM Transactions on Algorithms (to appear, 2009)
Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. In: Proc. 19th Ann. ACM-SIAM Sympos. Discrete Algorithms, pp. 836–843 (2008)
Chan, T.M.: A (slightly) faster algorithm for Klee’s measure problem. In: Proc. 24th Annual Symposium on Computational Geometry, pp. 94–100 (2008)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)
Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geometric problems. Computer Journal 51(3), 372–384 (2008)
Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
Langerman, S., Morin, P.: Covering things with things. Discrete & Computational Geometry 33(4), 717–729 (2005)
Megiddo, N.: On the complexity of polyhedral separability. Discrete & Computational Geometry 3, 325–337 (1988)
Megiddo, N.: On the complexity of some geometric problems in unbounded dimension. J. Symb. Comput. 10, 327–334 (1990)
Varadarajan, K., Venkatesh, S., Ye, Y., Zhang, J.: Approximating the radii of point sets. SIAM J. Comput. 36(6), 1764–1776 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giannopoulos, P., Knauer, C., Rote, G. (2009). The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-11269-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11268-3
Online ISBN: 978-3-642-11269-0
eBook Packages: Computer ScienceComputer Science (R0)