Skip to main content

A Probabilistic Approach to Problems Parameterized above or below Tight Bounds

  • Conference paper
Parameterized and Exact Computation (IWPEC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5917))

Included in the following conference series:

Abstract

We introduce a new approach for establishing fixed-parameter tractability of problems parameterized above tight lower bounds or below tight upper bounds. To illustrate the approach we consider two problems of this type of unknown complexity that were introduced by Mahajan, Raman and Sikdar (J. Comput. Syst. Sci. 75, 2009). We show that a generalization of one of the problems and three nontrivial special cases of the other problem admit kernels of quadratic size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N.: Voting paradoxes and digraphs realizations. Advances in Applied Math. 29, 126–135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J. Algorithms 50(1), 118–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, London (2009)

    MATH  Google Scholar 

  4. Blyth, T.S., Robertson, E.F.: Basic Linear Algebra. Springer, Heidelberg (2000)

    Google Scholar 

  5. Bourgain, J.: Walsh subspaces of \(L\sp{p}\)-product spaces. In: Seminar on Functional Analysis (1979–1980) (French)

    Google Scholar 

  6. Coppersmith, D.: Solving linear systems over GF(2): block Lanczos algorithm. Lin. Algebra Applic. 192, 33–60 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  8. Flum, J., Grohe, M.: arameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Heidelberg (2006)

    Google Scholar 

  9. Gutin, G., Kim, E.J., Mnich, M., Yeo, A.: Ordinal Embedding Relaxations Parameterized Above Tight Lower Bound. Tech. Report arXiv:0907.5427

    Google Scholar 

  10. Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem parameterized above guaranteed value. Theory Comput. Syst. 41, 521–538 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gutin, G., Szeider, S., Yeo, A.: Fixed-parameter complexity of minimum profile problems. Algorithmica 52(2), 133–152 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. HÃ¥stad, J., Venkatesh, S.: On the advantage over a random assignment. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, vol. 25(2), pp. 117–149 (2002)

    Google Scholar 

  13. Heggernes, P., Paul, C., Telle, J.A., Villanger, Y.: Interval completion with few edges. In: STOC 2007—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 374–381. ACM, New York (2007); Full version appeared in SIAM J. Comput. 38(5) (2008-2009)

    Google Scholar 

  14. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. of Computer and System Sciences 75(2), 137–153 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  17. Vovk, V.: Private communication (August 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutin, G., Kim, E.J., Szeider, S., Yeo, A. (2009). A Probabilistic Approach to Problems Parameterized above or below Tight Bounds. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11269-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11268-3

  • Online ISBN: 978-3-642-11269-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics