Abstract
We show that the partitions of an n-element set into k members of a given set family can be counted in time O((2 − ε)n), where ε> 0 depends only on the maximum size among the members of the family. Specifically, we give a simple combinatorial algorithm that counts the perfect matchings in a given graph on n vertices in time O(poly(n)ϕ n), where ϕ = 1.618... is the golden ratio; this improves a previous bound based on fast matrix multiplication.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Björklund, A., Husfeldt, T.: Exact algorithms for Exact Satisfiability and Number of Perfect Matchings. Algorithmica 52, 226–249 (2008)
Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion. SIAM J. Comput., Special Issue for FOCS 2006 (to appear)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: 39th ACM Symposium on Theory of Computing (STOC 2007), pp. 67–74. ACM Press, New York (2007)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. American Stat. Assoc. 58, 13–30 (1963)
Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)
Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348, 357–365 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Koivisto, M. (2009). Partitioning into Sets of Bounded Cardinality. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-11269-0_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11268-3
Online ISBN: 978-3-642-11269-0
eBook Packages: Computer ScienceComputer Science (R0)