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Abstract. Given a graph G together with a capacity function c : V (G) → N, we call
S ⊆ V (G) a capacitated dominating set if there exists a mapping f : (V (G) \ S) → S

which maps every vertex in (V (G) \S) to one of its neighbors such that the total number
of vertices mapped by f to any vertex v ∈ S does not exceed c(v). In the Planar Capac-
itated Dominating Set problem we are given a planar graph G, a capacity function c

and a positive integer k and asked whether G has a capacitated dominating set of size at
most k. In this paper we show that Planar Capacitated Dominating Set is W [1]-hard,
resolving an open problem of Dom et al. [IWPEC, 2008 ]. This is the first bidimensional
problem to be shown W [1]-hard. Thus Planar Capacitated Dominating Set can be-
come a useful starting point for reductions showing parameterized intractablility of planar
graph problems.

1 Introduction

In the Dominating Set problem we are given a graph G and asked for the smallest set
of vertices such that every vertex in the graph either belongs to this set or has a neighbor
which does. This basic problem in algorithms and complexity has been studied exten-
sively, and finds applications in various domains. Dominating Set has a special place
in parameterized complexity [5, 8, 12]. It is the most well-known W [2]-complete problem
and is a standard starting point for reductions that show intractability of parameter-
ized problems [5]. Even though the Dominating Set problem is a fundamentally hard
problem in the parameterized W -hierarchy, it has been used as a benchmark problem for
developing sub-exponential time FPT algorithms [1, 3, 10], and also for obtaining linear
kernels on planar graphs [2, 8, 11, 12], and more generally, graphs that exclude a fixed
graph H as a minor.

Different applications of Dominating Set have initiated studies of different gen-
eralizations and variations of the problem. These include Connected Dominating
Set, Partial Dominating Set, and Capacitated Dominating Set to name a few.
In this paper we focus on one such generalization, namely Capacitated Dominat-
ing Set. Given a graph G together with a capacity function c : V (G) → N, we call
S ⊆ V (G) a capacitated dominating set if there exists a mapping f : (V (G) \ S) → S

which maps every vertex in (V (G)\S) to one of its neighbors such that the total number
of vertices mapped by f to any vertex v ∈ S does not exceed c(v). The Capacitated
Dominating Set problem is defined as follows.

Capacitated Dominating Set (CDS): Given a graph G, a capacity function c

and a positive integer k, determine whether there exists a capacitated dominating
set S of G containing at most k vertices.



Dom et al. initiated the study of CDS from the perspective of Parameterized Com-
plexity, and showed that CDS is W [1]-hard parameterized by solution size and the
treewidth of the input graph [4]. Like Dominating Set, CDS has become a useful
source for showing W -hardness, especially when the parameter is the structure of the
input graph [7, 9]. It has been recently used to show the first W -hardness results for
problems parameterized by the cliquewidth of the input graph [9].

Many graph problems that are W -hard in general turn out to be FPT when restricted
to planar graphs. This is true for Dominating Set and many of its variants, and hence
it is very natural to consider the parameterized complexity of Planar Capacitated
Dominating Set, the restriction of CDS to planar graphs. For most planar graph
problems, an FPT algorithm can be obtained by combining a combinatorial bound
on the treewidth of non-trivial instances with a dynamic programming algorithm for
graphs of bounded treewidth. In fact for most problems restricted to planar graphs we
have subexponential time parameterized algorithms using bidimensionality theory [3].
PCDS, however, is an exception to this rule. In particular, it can easily be shown by
using bidimensionality that any planar graph that has a capacitated dominating set
of size at most k has treewidth O(

√
k). On the other hand, Dom et al. showed that

CDS is W [1]-hard when parameterized by solution size and the treewidth of the input
graph [4]. Thus, bidimensionality alone was not enough to tackle this problem and it was
an intriguing question whether PCDS could still turn out to be FPT by a non-trivial use
of planarity. We show that these hopes were futile by giving a W [1]-hardness reduction
for PCDS. Planar Capacitated Dominating Set is the first bidimensional problem
to be shown W [1]-hard. We believe that Planar Capacitated Dominating Set can
become a useful starting point for reductions showing parameterized intractablility of
planar graph problems.

2 Preliminaries

We will work with both undirected and directed graphs. Given a graph G, the vertex
set of G is V (G) and the edge set of G is E(G). For a graph G, n = |V (G)| and
m = |E(G)|. With NG(u) we denote all vertices that are adjacent to u and the degree of
u is dG(u) = |NG(u)|. Let f be the function associated with a capacitated dominating
set S. Given u ∈ S and v ∈ V \ S, we say that u dominates v if f(v) = u; moreover,
every vertex u ∈ S dominates itself. Note that the capacity of a vertex v only limits the
number of neighbors that v can dominate, that is, a vertex v ∈ S can dominate c(v) of
its neighbors plus v itself.

For a directed graph D the node set of D is N(D) and the arc set of D is A(D). For
a node u, N+

D (u) = {v : uv ∈ A} is the set of outneighbours of u, N−

D (u) = {v : vu ∈ A}
is the set of inneighbours of u and ND(u) = N+

D (u)∪N−

D(u) is the set of neighbours of u.
We define d+

D(u) = |N+
D (u)|, d−D(u) = |N−

D (u)| and dD(u) = |ND(u)| to be the outdegree,
indegree and degree of u respectively.

We use the notions of a parameterized problem, Fixed Parameter Tractability, hard-
ness for the complexity class W [1] and our hardness proofs involve FPT -reductions. For
an introduction to these notions, the reader is referred to the textbooks [5, 8, 12]. For
ease of reference we provide the definition of FPT -reductions here.
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Definition 1. [5, 8, 12] Let A,B be parameterized problems. We say that A is FPT-
reducible to B if there is an algorithm Φ which transforms (x, k) into (x′, g(k)) in time
f(k) · |x|α, where f, g : N → N are arbitrary functions and α is a constant independent
of |x| and k, so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

It is well known that if A is hard for W [1] and A is FPT-reducible to B, then B is also
W [1]-hard [5, 8, 12].

3 PCDS is W[1]-hard parameterized by solution size

In this section we show that PCDS is W [1]-hard when parameterized by solution size.
We reduce from Multi-Color Clique, a restriction of the k-Clique problem.

Multi-Color Clique (MCC) Given an integer k and a connected undirected
graph G = (V [1] ∪ V [2] · · · ∪ V [k], E) such that for every i the vertices of V [i]
induce an independent set, is there a k-clique C in G?

For i ≤ k the sets V [i] are called color classes of G. Since each color class forms an
independent set, a k-clique in G must contain exactly one vertex from each color class.
For two distinct integers i, j between 1 and k the set E[i, j] is the set of edges of G

with one endpoint in V [i] and the other in V [j]. The Multi-Color Clique problem is
known to be W[1]-hard [6] and is used as a starting point for many hardness reductions.

We will reduce to a slightly modified version of Planar Capacitated Dominating
Set, Planar Marked Capacitated Dominating Set (PMCDS) where we mark
some vertices and demand that all marked vertices must be in the dominating set.
We can then reduce from PMCDS to Planar Capacitated Dominating Set by
attaching k+1 leaves to each marked vertex and increasing the capacity of each marked
vertex by k + 1. It is easy to see that the new instance has a k-capacitated dominating
set if and only if the original one had a k-capacitated dominating set that contained
all marked vertices, and that this operation preserves planarity of the graph. Thus, to
prove that Planar Capacitated Dominating Set is W [1]-hard when parameterized
by solution size, it is sufficient to prove that PMCDS is. We will show how given an
instance (G, k) of Multicolor Clique, we can build an instance (H, c, k∗) of PMCDS
such that k∗ = O(k3) and G has a clique of size k if and only if H has a capacitated
dominating set of size k∗.

The reduction to PMCDS goes via an intermediate problem as well. We name this
problem the Planar Arc Supply problem, (PAS). In PAS we are given a planar
digraph D = (N,A) with |N(D)| + |A(D)| = k, no loops and no double arcs. Every
node u ∈ N has a demand ζ(u) and every arc uv ∈ A has a list L(uv) of ordered
integer pairs, called the supply pairs of uv. The task is to decide whether there is a
function fa : A → N and a function fb : A → N such that for every arc uv ∈ A

we have (fa(uv), fb(uv)) ∈ L(uv) and for every node u ∈ N we have that ζ(u) ≤
∑

v∈N+(u) fa(uv) +
∑

v∈N−(u) fb(vu). In essense we are asked to pick a supply pair from
the list of every arc such that for every vertex the arcs incident to it are able to cover
the demand of the vertex. Therefore the pair of fuctions fa and fb are called a supply
selection and a supply selection is called satisfying if the demand of all vertices is met.
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3.1 Identification Numbers.

Given an instance (G = (V [1] ∪ . . . ∪ V [k], E), k) to MCC every vertex and every edge
of G gets two pairs of identification numbers. Every vertex gets one pair of small and
one pair of medium identification numbers and every edge gets one pair of small and
one pair of large identification numbers. For the vertices these identification numbers
are defined as follows.

– Every vertex v gets assigned a unique number IDU
S (v) between 1 and n as its small

up-ID.
– The small down-ID of v is IDD

S (v) = n2 − IDU
S (v).

– The medium up-ID of v is IDU
M (v) = n3 · IDU

S (v).
– The medium down-ID of v is IDD

M (v) = n3 · IDD
S (v).

For edges the identification numbers are defined similarly. In particular:

– Every edge uv of G gets assigned a unique number IDU
S (uv) between 1 and m as its

small up-ID.
– The small down-ID of uv is IDD

S (uv) = n2 − IDU
S (uv).

– The large up-ID of uv is IDU
L (uv) = n6 · IDU

S (uv).
– The large down-ID of uv is IDD

L (uv) = n6 · IDD
S (uv).

Observe that 2m < n2 and that therefore all small down-ID’s are larger than all small
up-ID’s. We also define the huge numbers U = n20 − n19, D = n20 + n19 and M = n20.
The intuition behind using different “sizes” of identification numbers is that one can
think of the PAS instance we cosntruct as a set of wires in which signals are travelling,
with the identification numbers being the amplitude of the signal sent. Signals that are
of completely different orders of magnitude do not interfer with one another, in the sense
that when looking at “large” signals the signals of smaller order seem like unimportant
noise. However when the “large” signal is fixed, the “meduim” signals become important
etc. We will use the identification numbers first to give a reduction from MCC to PAS.
We will then reduce the obtained PAS instance to an instance of PMCDS. Some of the
identification numbers are vital for the first reduction, some for the second, and some
for both.

3.2 Reduction to Planar Arc Supply.

Given an instance (G = (V [1]∪ . . .∪V [k], E), k) to MCC we now construct an instance
of Planar Arc Supply. For every color class i between 1 and k we make a horizontal
cycle Ci

H . This is a directed cycle of length 12
(

k
2

)

, oriented clockwise. For every pair of

color classes i, j between 1 and k such that i < j we make a vertical cycle C
i,j
V . This is

a directed cycle of length 12k, oriented clockwise. We arrange the cycles in a grid, with
the vertical cycles corresponding to vertical lines on the grid and the horizontal cycles
corresponding to the horizontal lines on the grid. Every horizontal cycle intersects with
every vertical cycle in exactly four points. Following a cycle, there are exactly three
edges from one intersection point to the next. This concludes the construction of the
directed graph D. Observe that the graph D itself depends only on k. For a construction
of D for k = 3 see Figure 1.
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Fig. 1. The construction of D for k = 3. Horizontal cycles are shown in full lines, vertical in dotted
lines. The left-matching vertices are surrounded by a square, the right-matching vertices are surrounded
by a diamond.

The number of arcs in D is k · 12
(

k
2

)

+
(

k
2

)

· 12k. The number of nodes in D is

k · 12
(

k
2

)

+
(

k
2

)

· 12k − 4k ·
(

k
2

)

. Hence k′ = |N(D)| + |A(D)| = 44k
(

k
2

)

= O(k3).

The horizontal cycle Ct
H and the vertical cycle C

i,j
V intersect in exactly four nodes.

The top-left intersection node is called x
i,j
t and the bottom left intersection node is

called y
i,j
t . The nodes x

i,j
t and y

i,j
t such that i = t are called left-matching nodes and the

nodes x
i,j
t and y

i,j
t such that j = t are called right-matching nodes. An arc in a horizontal

cycle is called a horizontal arc and an arc in a vertical cycle is called a vertical arc. An
arc whose endpoint is a left-matching node is also called left-matching and similarly an
arc whose endpoint is a right-matching node is called left-matching. If an arc or node is
left-matching or right-matching then it is also a matching arc (node).

We now describe the demands of all the nodes and the supply lists of all the arcs of
D. Observe that every node v of G has degree either 2 or 4. The demand of every vertex
of degree 2 in a horizontal cycle is 2M + n5. The demand of every vertex of degree 2 in
a vertical cycle is 2M + n8 and the demand of every degree 4 vertex is 4M + n8 + n5.
The description of the supply-lists conclude the description of the PAS instance. Every
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pair in a supply list of a horizontal arc will correspond to a vertex of G while every pair
in a supply list of a vertical arc will correspond to an edge of G.

The intuition is that each horizontal cycle Ci
H encodes the choice of which vertex in

V [i] will be in the clique. Each vertical cycle C
i,j
V encodes the choice of which edge of

E[i, j] will be in the clique. The large identification numbers are used in all arcs of the
vertical cycles to encode this choice of edges. The medium identification numbers are
used in all arcs of the horizontal cycles to encode the choice of vertices. In the intersection
of the horizontal cycle Ci

H and the vertical cycle C
i,j
V we use the left-matching vertices

x
i,j
i and y

i,j
i to make sure that the vertex selected in the horizontal cycle Ci

H and the

edge selected in the vertical cycle C
i,j
V are incident. Similarly, in the intersection of the

horizontal cycle C
j
H and the vertical cycle C

i,j
V we use the right-matching vertices x

i,j
j

and y
i,j
j to make sure that the vertex selected in the horizontal cycle C

j
H and the edge

selected in the vertical cycle C
i,j
V are incident. The incidence check is performed using

small identification numbers. The huge numbers U and D are always present in all supply
pairs. These numbers are used in second stage of the reduction (from PAS to PMCDS)
and do not play a role in the first part. We now formally describe the supply-lists.

– For every non-matching horizontal arc uv of the cycle Ci
H , for every a ∈ V [i] there

is a pair (U + IDU
M (a),D + IDD

M (a)) in L(uv)

– For every matching horizontal arc uv pointing at a node x
i,j
i , for every a ∈ V [i] there

is a pair (U + IDU
M (a),D + IDD

M (a) + IDD
S (a)) in L(uv).

– For every matching horizontal arc uv pointing at a node y
i,j
i , for every a ∈ V [i] there

is a pair (U + IDU
M (a),D + IDD

M (a) − IDD
S (a)) in L(uv)

– For every non-matching vertical arc uv of the cycle C
i,j
V , for every ab ∈ E[i, j] there

is a pair (U + IDU
L (ab),D + IDD

L (ab)) in L(uv).

– For every left-matching vertical arc uv pointing at a node x
i,j
i , for every a ∈ V [i]

and b ∈ V [j] such that ab ∈ E there is a pair (U + IDU
L (ab),D+ IDD

L (ab)− IDD
S (a))

in L(uv).
– For every left-matching vertical arc uv pointing at a node y

i,j
i , for every a ∈ V [i]

and b ∈ V [j] such that ab ∈ E there is a pair (U + IDU
L (ab),D+ IDD

L (ab)+ IDD
S (a))

in L(uv).
– For every right-matching vertical arc uv pointing at a node x

i,j
i , for every a ∈ V [i]

and b ∈ V [j] such that ab ∈ E there is a pair (U + IDU
L (ab),D+ IDD

L (ab)− IDD
S (b))

in L(uv).
– For every right-matching vertical arc uv pointing at a node y

i,j
i , for every a ∈ V [i]

and b ∈ V [j] such that ab ∈ E there is a pair (U + IDU
L (ab),D+ IDD

L (ab)+ IDD
S (b))

in L(uv).

Lemma 1. If G contains a clique C of size k then D has a satisfying supply selection.

Proof. Any k-clique in G must contain exactly one vertex from each set V [i] and exactly
one edge from each set E[i, j]. Let ci be the vertex in C∩Ci. For every i between 1 and k

and every horizontal arc in Ci
H select the supply pair corresponding to ci. For every pair

i, j such that i < j and every vertical arc in C
i,j
V select the supply pair corresponding

to the edge cicj . The case analysis below shows that the demand of all vertices is met.
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– For every vertex with degree 2 on the horizontal cycle Ci
H , demand is 2M + n5, and

total supply is D + IDD
M (ci) + U + IDU

M (ci) = 2M + n5.

– For every vertex with degree 2 on the vertical cycle C
i,j
H , demand is 2M + n8, and

total supply is D + IDD
L (cicj) + U + IDU

L (cicj) = 2M + n8.
– For every non-matching vertex with degree 4 lying on the horizontal cycle Ct

H and

vertical cycle C
i,j
V , demand is 4M + n8 + n5, and total supply is D + IDD

M (ct) +U +
IDU

M (ct) + D + IDD
L (cicj) + U + IDU

L (cicj) = 4M + n8 + n5.

– For every left-matching vertex x
i,j
i , demand is 4M + n8 + n5, and total supply is

D+IDD
M (ci)+IDD

S (ci)+U+IDU
M (ci)+D+IDD

L (cicj)−IDD
S (ci)+U+IDU

L (cicj) =
4M + n8 + n5.

– For every left-matching vertex y
i,j
i , demand is 4M + n8 + n5, and total supply is

D+IDD
M (ci)−IDD

S (ci)+U+IDU
M (ci)+D+IDD

L (cicj)+IDD
S (ci)+U+IDU

L (cicj) =
4M + n8 + n5.

– For every right-matching vertex x
i,j
j , demand is 4M + n8 + n5, and total supply is

D+IDD
M (cj)+IDD

S (cj)+U+IDU
M (cj)+D+IDD

L (cicj)−IDD
S (cj)+U+IDU

L (cicj) =
4M + n8 + n5.

– For every right-matching vertex y
i,j
j , demand is 4M + n8 + n5, and total supply is

D+IDD
M (cj)−IDD

S (cj)+U+IDU
M (cj)+D+IDD

L (cicj)+IDD
S (cj)+U+IDU

L (cicj) =
4M + n8 + n5.

Lemma 2. If D has a satisfying supply selection then G contains a clique C of size k.

Proof. Every pair in a supply list of a horizontal arc corresponds to a vertex of G while
every pair in a supply list of a vertical arc corresponds to an edge of G. Hence the
satisfying supply selection of D represents a choice of an edge of G for every arc in
a vertical cycle, and a choice of a vertex for every arc in a horizontal cycle. Consider
two consecutive arcs uv and vw on a vertical cycle C

i,j
V and let a be the edge of G

selected at uv and b be the edge selected at vw. We prove that IDU
L (b) ≥ IDU

L (a).
Suppose for contradiction that IDU

L (b) < IDU
L (a). If v has degree 2 then demand is

2M + n8 and supply is D + IDD
L (a) + U + IDU

L (b) < 2M + n8. Observe that since
IDU

L (a) = n6 · IDU
S (a) we have that if IDU

L (b) < IDU
L (a) then IDU

L (b) + n6 ≤ IDU
L (a).

Thus, if v has degree 4 then v’s demand is 2M + n8 + n5 and the total supply at v is at
most D + IDD

L (a) + n2 + U + IDU
L (b) + U + n5 +D + n5 ≤ 4M+ n8 + 2n5 + n2 − n6 <

4M + n8 + n5. Hence IDU
L (b) ≥ IDU

L (a). Since this holds for every pair of consecutive

arcs on the vertical cycle C
i,j
V , all arcs on the cycle C

i,j
V select the same edge of G.

We now prove that a similar observation holds for the horizontal cycles, that is, that
all arcs on the horizontal cycle Ci

H select the same vertex of G. Consider two consecutive
arcs uv and vw on a horizontal cycle Ci

H and let a be the vertex of G selected at uv

and b be the vertex selected at vw. We prove that IDU
M (b) ≥ IDU

M (a). Suppose for
contradiction that IDU

M (b) < IDU
M (a). If v has degree 2 then v’s demand is 2M + n5

and the supply at v is U + IDD
M (a) + D + IDU

M (b) < 2M + n5. Now, suppose v has
degree 4, then the demand of v is 4M +n8 +n5. Observe that if IDU

M (b) < IDU
M (a) then

IDU
M (b)+n3 ≤ IDU

M (a). Also, since all arcs on the vertical cycle containing v select the
same edge of G, the vertical arcs incident to v supply v with at most 2M + n8 + n2.
Hence the total supply at v is at most 2M +n8 +n2 +D+IDD

M (a)+n2 +U +IDU
M (b) ≤
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4M + n8 + n5 + 2n2 − n3 < 4M + n8 + n5. Hence IDU
L (b) ≥ IDU

L (a). Since this holds
for every pair of consecutive arcs on the horizontal cycle Ci

H , all arcs on the cycle Ci
H

select the same vertex of G.

Thus every horizontal cycle Ci
H selects a vertex ci ∈ V [i] and every vertical cycle

C
i,j
V selects an edge ei,j ∈ E[i, j]. It remains to prove that for every i, j, ei,j is incident

to both ci and to cj . We prove that ei,j is incident to ci. In particular, let c′i be the
vertex in V [i] incident to ei,j in V [i]. We prove that IDD

S (ci) = IDD
S (c′i). Suppose that

IDD
S (ci) < IDD

S (c′i). Then the supply at x
i,j
i is at most D + IDD

M (ci) + IDD
S (ci) + U +

IDU
M (ci) +D + IDD

L (ei,j)− IDD
S (c′i) + U + IDU

L (ei,j) < 4M+ n8 + n5, a contradiction.

Similarly if IDD
S (ci) > IDD

S (c′i) then the supply at y
i,j
i is at most D + IDD

M (ci) −
IDD

S (ci) + U + IDU
M (ci) + D + IDD

L (ei,j) + IDD
S (c′i) + U + IDU

L (ei,j) < 4M + n8 + n5.
Hence IDD

S (ci) = IDD
S (c′i) and ei,j is incident to ci. The proof that ei,j is incident to cj

is similar. This proves that {c1, . . . , ck} is a clique in G.

3.3 Reduction to Planar Marked Capacitated Dominating Set

We now show how to transform an instance D, k′ of Planar Arc Supply constructed
from a Multi-Color Clique instance G, k as in Section to an instance H, k∗ of
Planar Marked Capacitated Dominating Set. To build H we start with the
node set N(D) and make every vertex of N(D) marked. For every arc uv of D we make
a gadget between u and v in H. In particular, for an arc uv ∈ A(D), for every pair of
integers (p, q) ∈ L(u, v) we add a vertex w to H, make w adjacent to u, add p vertices
of degree 2 adjacent to u and w and add q vertices of degree 2 adjacent to w and v. We
call the vertex w is a list vertex. This concludes the construction of the graph H. Since
D is planar and the gadget we add to H for every arc of D is planar, H is planar as
well. Every marked vertex v of H is also a vertex in D. The capacity of v in H is set to
dH(v)−ζ(v)−d+

D(v), that is, the degree of v in H, minus v’s demand in D and minus v’s
outdegree in D. For all unmarked vertices, their capacity in H is equal to their degree
in H. Finally, k∗ = |N(D)| + |A(D)|. This concludes the construction of the Planar
Marked Capacitated Dominating Set instance (H, k∗).

Lemma 3. If D has a satisfying supply selection then H has a capacitated dominating
set of size k∗

Proof. We build a capacitated dominating set S of H. First we insert all the marked
vertices of H in S. For every arc uv of D we add a list vertex w to S, namely the list
vertex that corresponds to the supply pair in L(uv) that was selected by the satisfying
supply selection of D. The size of S is |N(D)|+ |A(D)| = k∗. We now prove that S is a
capacitated dominating set of H.

First, observe that the marked vertices of H form a dominating set of H, so S is a
dominating set of H. Now, every unmarked vertex in S has capacity equal to its degree,
so all unmarked vertices in S dominate all their neighbours. We now prove that for every
marked vertex u, the number of yet undominated neighbours of u is at most the capacity
of u. The number of neighbours of u that already have been dominated is at least ζ(u).
The number of neighbours of u that are in S is d+

D(u). Hence, the total number of yet
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undominated neighbours of u is at most dH(u) − ζ(u) − d+
D(u) which is the capacity of

u. Hence S is a capacitated dominating set of H.

Lemma 4. If H has a capacitated dominating set S of size k∗ then D has a satisfying
supply selection.

Proof. There are two kinds of unmarked vertices in H, list vertices and vertices of
degree 2. Every degree 2 vertex u has exactly one neighbour that is unmarked, and one
neighbour v that is a list vertex. Since the capacity of v is equal to its degree and all
marked vertices must be in S, if u ∈ S then S ∪ {v} \ {u} is a capacitated dominating
set of H of size at most k∗. Thus, without loss of generality, all unmarked vertices in S

are list vertices.

For an arc uv of D, let s(uv) be the number of vertices in S in the gadget cor-
responding to the arc uv. For a vertex u of D let s+(u) =

∑

uv∈A(D) s(uv), s−(u) =
∑

vu∈A(D) s(uv) and s(u) = s+(u) + s−(u). Since S contains at most |A(D)| unmarked
vertices we have that

∑

u∈V (D) s(u) ≤ 2|A(D)|. If s(u) < dD(u) for a vertex u then the
number of vertices in NH(u) dominated by vertices other than u is at most s(u) · (D +
n10) < dD(u)M . However the capacity of u is at most dH(u) − dD(u)M , contradicting
that S is a capacitated dominating set. Hence, for every node u ∈ N(D), s(u) ≥ dD(u).
If for some node s(u) > dD(u) then

∑

u∈N(D) s(u) >
∑

u∈N(D) dD(u) = 2|A(D)|, contra-
dicting that

∑

u∈N(D) s(u) ≤ 2|A(D)|. Thus, for every node u ∈ N(D), s(u) = dD(u).

Consider now three consecutive arcs pq, qr and rs in A(D) such that both q and
r have degree 2 in D. There are three cases, either s(pq) = s(qr) = s(qs) = 1 or
s(pq) = s(qs) = 2 and s(qr) = 0 or finally s(pq) = s(qs) = 0 and s(qr) = 2. We show
that the last two cases lead to a contradiction. If s(pq) = s(qs) = 2 and s(qr) = 0
then the number of neighbours of r dominated by vertices other than r is at most
2(U + n10) < 2M . However the capacity of r is at most dH(r) − 2M , contradicting
that S is a capacitated dominating set. Similarly, if s(pq) = s(qs) = 0 and s(qr) = 2
then the number of neighbours of q dominated by vertices other than q is at most
2(U + n10) < 2M . However the capacity of q is at most dH(q)− 2M , contradicting that
S is a capacitated dominating set. It follows that s(pq) = s(qr) = s(qs) = 1. Because
the distance in H between any pair of vertices with degree 4 is at least 3 it follows that
s(pq) = 1 for every arc pq ∈ A(D).

We now make a supply selection (fa, fb) for D as follows. For every arc uv there is
exactly one unmarked vertex x in S in the gadget in H corresponding to the arc uv. This
vertex x corresponds to a pair (p, q) ∈ L(uv) and we make uv select the pair (p, q). Every
arc selects a pair from its list in this manner. We now show that this supply selection
is satisfying. Suppose for contradiction that this is not the case, then there is some
vertex u ∈ N(D) whose demand is not met. Then u is a marked vertex in H, and the
demand of u is dH(u)−ζ(u)−d+

D(u). The number of neighbours of u that are dominated
by vertices other than u is at most

∑

v∈N+(u) fa(uv) +
∑

v∈N−(u) fb(vu) < ζ(u). Since

s(pq) = 1 for every arc pq ∈ A(D), u is adjacent to exactly d+(u) vertices in S. Thus u

must dominate more than dH(u)−ζ(u)−d+
D(u) vertices, a contradiction. This concludes

the proof.
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The constructions together with Lemmata 1, 2, 3 and 4 yield the main result of this
paper.

Theorem 1. Planar Capacitated Dominating Set is W [1]-hard.
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