Abstract
A Pareto Local Search (PLS) algorithm was developed and applied to the screw configuration of co-rotating twin-screw extruders. This problem can be seen as a sequencing problem where a set of different screw elements are to be sequentially positioned along the screw in order to maximize the extruder performance. The results obtained were compared with previous results obtained with a Multi-Objective Evolutionary Algorithm (MOEA), which was previously developed by the authors. These results show that the PLS algorithm, despite its conceptual simplicity, is able to generate screws with good performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gaspar-Cunha, A., Covas, J.A., Vergnes, B.: Defining the Configuration of Co-Rotating Twin-Screw Extruders With Multiobjective Evolutionary Algorithms. Polymer Engineering and Science, 1159–1173 (2005)
Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices. European J. of Operational Research 169, 943–959 (2006)
Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) FAIR 1991. LNCS, vol. 535, pp. 177–200. Springer, Heidelberg (2004)
White, J.L.: Twin Screw Extrusion; Technology and Principles. Hanser, Munich (1990)
Vergnes, B., Della Valle, G., Delamare, L.: A Global Computer Software for Polymer Flows in Corotating Twin Screw Extruders. Polymer Engineering and Science 38, 1781–1792 (1998)
Teixeira, C., Gaspar-Cunha, A., Covas, J.A.: A Global Plasticating Software for Co-Rotating Twin Screw Extruders (Under preparation) (2009)
Gaspar-Cunha, A., Oliveira, P., Covas, J.A.: Use of Genetic Algorithms in Multicriteria Optimization to Solve Industrial Problems. In: Seventh Int. Conf. on Genetic Algorithms. Michigan, USA (1997)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)
Gaspar-Cunha, A., Covas, J.A.: RPSGAe - A Multiobjective Genetic Algorithm with Elitism: Application to Polymer Extrusion. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNCS, vol. 535, pp. 221–249. Springer, Heidelberg (2004)
Gaspar-Cunha, A.: Modelling and Optimization of Single Screw Extrusion. PhD Thesis, University of Minho, Guimarães, Portugal (2000), http://www.lania.mx/~ccoello/EMOO/
Hoos, H.H., Stützle, T.: Stochastic Local Search - Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2004)
Angel, E., Bampis, E., Gourvés, L.: A dynasearch neighborhood for the bicriteria traveling salesman problem. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNCS, vol. 535, pp. 153–176. Springer, Heidelberg (2004)
da Fonseca, V.G., Fonseca, C., Hall, A.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Ziztler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 213–225. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Teixeira, C., Covas, J., Stützle, T., Gaspar-Cunha, A. (2010). Optimization of Co-rotating Twin-Screw Extruders Using Pareto Local Search. In: Gao, XZ., Gaspar-Cunha, A., Köppen, M., Schaefer, G., Wang, J. (eds) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11282-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-11282-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11281-2
Online ISBN: 978-3-642-11282-9
eBook Packages: EngineeringEngineering (R0)