Skip to main content

Embedding a KM Type Reducer for High Speed Fuzzy Controller into an FPGA

  • Conference paper
Soft Computing in Industrial Applications

Abstract

There are many research works that have shown the advantages of type-2 fuzzy inference systems (T2-FIS) handling uncertainty with respect to type-1 fuzzy inference systems (T1-FIS); however, the use of a T2-FIS is still being controversial for several reasons, one of the most important is related to the resulting shocking increase in computational complexity that type reducers cause even for small systems, for example the Karnik-Mendel (KM) iterative method. The main goal of this paper is to show that the KM type reducer can be an efficient method if it is adequately implemented using the appropriate combination of hardware and software. In this work a novel architecture to implement the KM type reducer is shown, and in order to evaluate the architecture a comparative study was conducted. The study consisted in using a type-2 FIS programmed in Matlab to obtain some benchmarks, this to contrast the obtained results by testing the FIS programmed in VHDL for FPGA implementation. Preliminary studies have shown that the resulting speed up is in the order of 103, since a typical whole T2-inference (fuzzification, inference, KM-type reducer, and defuzzification) last 5 clock cycles; i.e., 0.1 × 10− 6 seconds for a Spartan 3 FPGA based system. Comparisons of the resulting control surfaces between T2-FIS programmed in Matlab and the FPGA implementation are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lynch, C., Hagras, H., Callaghan, V.: Embedded Type-2 FLC for Real-Time Speed Control of Marine and Traction Diesel engines. In: IEEE International Conference on Fuzzy Systems, pp. 347–352 (2005)

    Google Scholar 

  2. Hagras, H.A.: Hierarchical Type-2 Fuzzy Logic Control Architecture for Autonomous Mobile Robots. IEEE Transactions on Fuzzy Systems 12(4), 524–539

    Google Scholar 

  3. Wu, H., Mendel, J.M.: Uncertanty Bounds and Their use in the Design of Interval type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems 10, 1–16 (2002)

    Google Scholar 

  4. Mendel, J.M.: Type-2 Fuzzy Sets and Systems: an Overview. IEEE Computational Intelligence Magazine 2, 20–29 (2007)

    Google Scholar 

  5. Mendel, J.M.: Type-2 Fuzzy Sets: Some Questions and Answers. IEEE Connections, Newsletter of the IEEE Neural Networks Society 1, 10–13 (2003)

    Google Scholar 

  6. Mendel, J.M., Bob John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10, 117–127 (2002)

    Article  Google Scholar 

  7. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Uppersaddle River (2001)

    MATH  Google Scholar 

  8. Mendel, J.M., Hagras, H., John, R.I.: Standard Background Material About Interval Type-2 Fuzzy Logic Systems That Can Be Used By All Authors, http://ieee-cis.org/_files/standards.t2.win.pdf

  9. Castro, J.R., Castillo, O., Melín, P., Rodríguez, A.: Building Fuzzy Inference Systems with a new Interval Type-2 Fuzzy Logic Toolbox. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science I. LNCS, vol. 4750, pp. 104–114. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Castro, J.R., Castillo, O., Melín, P.: An interval type-2 fuzzy logic toolbox for control applications. In: Castro, J.R., Castillo, O., Melin, P. (eds.) 2008 Proceedings of FUZZ-IEEE, London, pp. 61–67 (2007)

    Google Scholar 

  11. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems 7, 643–658 (1999)

    Article  Google Scholar 

  12. Karnik, N., Mendel, J.M.: Centroid of a Type-2 Fuzzy Set. Information Sciences 132, 195–220 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Trans. on Fuzzy Systems 8, 535–550 (2000)

    Article  Google Scholar 

  14. Manual of Xilinx System Generator, http://www.xilinx.com

  15. Melgarejo, M., Peña-Reyes, C.A.: Implementing Interval type-2 Fuzzy Processors. IEEE Computational Intelligence Magazine 2, 63–71 (2007)

    Article  Google Scholar 

  16. Melgarejo, M.A., Garcia, R.A., Peña-Reyes, C.A.: Hardware architecture and FPGA implementation of a type-2 fuzzy system, Proceedings of the 14th ACM Great Lakes symposium on VLSI, pp. 458-461 (2004)

    Google Scholar 

  17. Melgarejo, M.A., Garcia, R.A., Peña-Reyes, C.A.: Pro-Two: a hardware based platform for real time type-2 fuzzy inference. In: Proceedings of 2004 IEEE International Conference on Publication Fuzzy Systems, vol. 2, pp. 977–982 (2004)

    Google Scholar 

  18. Cirstea, M.N., Dinu, A., Khor, J.G., McCormick, M.: Neural and Fuzzy Logic Control of Drives and Power System, Newnes (2002)

    Google Scholar 

  19. Melin, P., Castillo, O.: A New Method for Adaptive Control of Non-Linear Plants using Type-2 Fuzzy Logic and Neural Networks. International J. of General Systems 33(2), 289–304 (2004)

    Article  MATH  Google Scholar 

  20. Sepúlveda, R., Castillo, O., Melin, P., Díaz, A.R., Montiel, O.: Experimental Study of Intelligent Controllers under Uncertainty using type-1 and type-2 Fuzzy Logic. Information Sciences 177, 2023–2048 (2007)

    Article  Google Scholar 

  21. Sepúlveda, R., Castillo, O., Melín, P., Montiel, O.: An Efficient Computational Method to implement Type-2 Fuzzy Logic in Control Applications. In: Analysis and Design of Intelligent Systems Using Soft Computing Techniques, Advances in soft computing, vol. 41, pp. 45–52. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Poorani, S., Urmila Priya, T.V.S.: FPGA Based Fuzzy Logic Controller for Electric Vehicle. Journal of the Institution of Engineers 45(5), 1–14 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sepúlveda, R., Montiel-Ross, O., Castillo, O., Melin, P. (2010). Embedding a KM Type Reducer for High Speed Fuzzy Controller into an FPGA. In: Gao, XZ., Gaspar-Cunha, A., Köppen, M., Schaefer, G., Wang, J. (eds) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11282-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11282-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11281-2

  • Online ISBN: 978-3-642-11282-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics