Skip to main content

Generating Visual Concept Network from Large-Scale Weakly-Tagged Images

  • Conference paper
Advances in Multimedia Modeling (MMM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5916))

Included in the following conference series:

Abstract

When large-scale online images come into view, it is very attractive to incorporate visual concept network for image summarization, organization and exploration. In this paper, we have developed an automatic algorithm for visual concept network generation by determining the diverse visual similarity contexts between the image concepts. To learn more reliable inter-concept visual similarity contexts, the images with diverse visual properties are crawled from multiple sources and multiple kernels are combined to characterize the diverse visual similarity contexts between the images and handle the issue of sparse image distribution more effectively in the high-dimensional multi-modal feature space. Kernel canonical correlation analysis (KCCA) is used to characterize the diverse inter-concept visual similarity contexts more accurately, so that our visual concept network can have better coherence with human perception. A similarity-preserving visual concept network visualization technique is developed to assist users on assessing the coherence between their perceptions and the inter-concept visual similarity contexts determined by our algorithm. Our experimental results on large-scale image collections have observed very good results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. PAMI 22(12), 1349–1380 (2000)

    Google Scholar 

  2. Hauptmann, A., Yan, R., Lin, W.-H., Christel, M., Wactlar, H.: Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news. IEEE Trans. on Multimedia 9(5), 958–966 (2007)

    Article  Google Scholar 

  3. Benitez, A.B., Smith, J.R., Chang, S.-F.: MediaNet: A multimedia information network for knowledge representation. In: Proc. SPIE, vol. 4210 (2000)

    Google Scholar 

  4. Naphade, M., Smith, J.R., Tesic, J., Chang, S.-F., Hsu, W., Kennedy, L., Hauptmann, A., Curtis, J.: Large-scale concept ontology for multimedia. IEEE Multimedia (2006)

    Google Scholar 

  5. Lowe, D.: Distinctive image features from scale invariant keypoints. Intl. Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  6. Wu, L., Li, M., Li, Z., Ma, W.-Y., Yu, N.: Visual lanuage modeling for image classification. In: ACM MIR (2007)

    Google Scholar 

  7. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  8. Grin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology (2007)

    Google Scholar 

  9. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: A database and web-based tool for image annotation. Int. J. Comput. Vision 77(1-3), 157–173 (2008)

    Article  Google Scholar 

  10. Sonnenburg, S., Ratsch, G., Schafer, C., Scholkopf, B.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

    MathSciNet  Google Scholar 

  11. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. Intl. Journal of Computer Vision 73(2), 213–238 (2007)

    Article  Google Scholar 

  12. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing features: efficient boosting procedures for multiclass object detection. In: IEEE CVPR (2004)

    Google Scholar 

  13. Gao, Y., Peng, J., Luo, H., Keim, D., Fan, J.: An Interactive Approach for Filtering out Junk Images from Keyword-Based Google Search Results. IEEE Trans. on Circuits and Systems for Video Technology 19(10) (2009)

    Google Scholar 

  14. Huang, J., Kumar, S.R., Zabih, R.: An automatic hierarchical image classification scheme. In: ACM Multimedia, Bristol, UK (1998)

    Google Scholar 

  15. Vasconcelos, N.: Image indexing with mixture hierarchies. In: IEEE CVPR (2001)

    Google Scholar 

  16. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. on PAMI 25(9), 1075–1088 (2003)

    Google Scholar 

  17. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: IEEE CVPR (2005)

    Google Scholar 

  18. Barnard, K., Forsyth, D.: Learning the semantics of words and pictures. In: IEEE ICCV, pp. 408–415 (2001)

    Google Scholar 

  19. Naphade, M., Huang, T.S.: A probabilistic framework for semantic video indexing, filterig and retrieval. IEEE Trans. on Multimedia 3(1), 141–151 (2001)

    Article  Google Scholar 

  20. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods, Technical Report, CSD-TR-03-02, University of London (2003)

    Google Scholar 

  21. Wu, L., Hua, X.-S., Yu, N., Ma, W.-Y., Li, S.: Flickr distance. ACM Multimedia (2008)

    Google Scholar 

  22. Cilibrasi, R., Vitanyi, P.: The Google similarity distance. IEEE Trans. Knowledge and Data Engineering 19 (2007)

    Google Scholar 

  23. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Boston (1998)

    MATH  Google Scholar 

  24. Lamping, J., Rao, R.: The hyperbolic browser: A focus+content technique for visualizing large hierarchies. Journal of Visual Languages and Computing 7, 33–55 (1996)

    Article  Google Scholar 

  25. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, Boca Raton (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, C., Luo, H., Fan, J. (2010). Generating Visual Concept Network from Large-Scale Weakly-Tagged Images. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, YP.P. (eds) Advances in Multimedia Modeling. MMM 2010. Lecture Notes in Computer Science, vol 5916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11301-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11301-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11300-0

  • Online ISBN: 978-3-642-11301-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics