Abstract
With extracted local features of a given image, computing its global feature under perceptual framework has shown promising performance in object recognition. However, under some tough applications with large intra-class variance, using only one kind of local feature is inadequate to build a robust classification system. To integrate the discriminability of complementary local features, in this paper, we extend the efficacy of perceptual framework to adapt to heterogeneous features. Given multiple raw global features, we propose a fusion strategy through metric learning, which is called weak metric learning in this work, for fusing high dimensional features. The fusion model is solved with the maximal kernel canonical correlation formulation with the multiple global features as outputs. Experimental results show that our method achieves significant improvements about 5% to 11% than the benchmark perceptual framework system, HMAX, on several difficult categories of object recognition with much less training samples and feature elements.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fei-Fei, L., Fergus, R., Perona., P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: IEEE CVPR, Workshop on Generative-Model Based Vision (2004)
Frome, A., Singer, Y., Malik, J.: Image retrieval and classification using local distance functions. In: NIPS (2007)
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE TPAMI 29(3), 411–426 (2007)
Rosch, E.: Natural Categories. Cognitive Psychology 4(3), 328–350 (1973)
Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2, 1019–1025 (1999)
Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: NIPS (2004)
Zhang, H., Berg, A., Maire, M., Malik, J.: SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: IEEE CVPR (2006)
Lowe, D.: Object recognition from local scale-invariant features. In: IEEE ICCV (1999)
Fu, Y., Cao, L., Guo, G., Huang, T.S.: Multiple feature fusion by subspace learning. In: ACM CIVR, pp. 127–134 (2008)
Lin, Y., Liu, T., Fuh, C.: Dimensionality Reduction for Data in Multiple Feature Representations. In: NIPS (2008)
Lai, P., Fyfe, C.: Kernel and nonlinear canonical correlation analysis. International Journal of Neural Systems 10(5), 365–378 (2000)
Hardoon, D., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE TPAMI, 509–522 (2002)
Berg, A., Malik, J.: Geometric blur and template matching. In: IEEE CVPR (2001)
Lindeberg, T.: Scale-space: A framework for handling image structures at multiple scales. European Organization for Nuclear Research-Reports-CERN, 27–38 (1996)
Fu, Y., Yan, S., Huang, T.: Correlation metric for generalized feature extraction. IEEE TPAMI, 2229–2235 (2008)
Kim, T., Kittler, J., Cipolla, R.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE TPAMI 29(6), 1005–1018 (2007)
Sun, Q., Zeng, S., Liu, Y., Heng, P., Xia, D.: A new method of feature fusion and its application in image recognition. Pattern Recognition 38(12), 2437–2448 (2005)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10), 761–767 (2004)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(1), 43–72 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, X., Zhao, X., Fu, Y., Liu, Y. (2010). Weak Metric Learning for Feature Fusion towards Perception-Inspired Object Recognition. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, YP.P. (eds) Advances in Multimedia Modeling. MMM 2010. Lecture Notes in Computer Science, vol 5916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11301-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-11301-7_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11300-0
Online ISBN: 978-3-642-11301-7
eBook Packages: Computer ScienceComputer Science (R0)