Abstract
This paper proposes a framework for automatic video summarization by exploiting internal and external textual descriptions. The web knowledge base Wikipedia is used as a middle media layer, which bridges the gap between general user descriptions and exact film subtitles. Latent Dirichlet Allocation (LDA) detects as well as matches the distribution of content topics in Wikipedia items and movie subtitles. A saliency based summarization system then selects perceptually attractive segments from each content topic for summary composition. The evaluation collection consists of six English movies and a high topic coverage is shown over official trails from the Internet Movie Database.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Capus, C., Brown, K.: Fractional fourier transform of the aussian and fractional domain signal support. Vision, Image and Signal Processing 150(2), 99–106 (2003)
Chen, L., Rizvi, S.J., Otzu, M.: Incorporating audio cues into dialog and action scene detection. In: Proceedings of SPIE Conference on Storage and Retrieval for Media Databases, pp. 252–264 (2003)
Evangelopoulos, G., Maragos, P.: Multiband modulation energy tracking for noisy speech detection. IEEE Transactions on Audio, Speech, and Language Processing 14(6), 24–2038 (2006)
Evangelopoulos, G., Rapantzikos, K., Potamianos, A., Maragos, P., Zlatintsi, A., Avrithis, Y.: Movie summarization based on audiovisual saliency detection. In: ICIP 2008, San Diego, CA, October 2008, pp. 2528–2531 (2008)
Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Sciences 101(supl. 1), 5228–5235 (2004)
Hanjalic, A., Xu, L.: Affective video content repression and model. IEEE Trans on Multimedia 7(1), 143–155 (2005)
Heidel, A., Chang, H.-a., Lee, L.-s.: Language model adaptation using latent Dirichlet allocation and an efficient topic inference algorithm. In: European Conference on Speech Communication and Technology, Antwerp, Belgium (2007)
Kawai, Y., Sumiyoshi, H., Yagi, N.: Automated production of tv program trailer using electronic program guide. In: CIVR, pp. 49–56 (2007)
Li, Y., Lee, S.-H., Yeh, C.-H., Kuo, C.-C.: Techniques for movie content analysis and skimming: tutorial and overview on video abstraction techniques. IEEE Signal Processing Magazine 23(2), 79–89 (2006)
Misra, H., Cappé, O., Yvon, F.: Using LDA to detect semantically incoherent documents. In: Conference on Computational Natural Language Learning, Manchester, U.K. (2008)
Misra, H., Yvon, F., Jose, J., Cappe, O.: Text segmentation via topic modeling: An analytical study. In: CIKM 2009 (2009)
Money, A.G., Agius, H.: Video summarisation: A conceptual framework and survey of the state of the art. J. Vis. Comun. Image Represent. 19(2), 121–143 (2008)
Over, P., Smeaton, A.F., Awad, G.: The trecvid 2008 rushes summarization evaluation. In: TVS 2008, Vancouver, British Columbia, Canada, pp. 1–20. ACM, New York (2008)
Ren, R., Swamy, P.P., Jose, J.M., Urban, J.: Attention-based video summarisation in rushes collection. In: TVS, pp. 89–93 (2007)
Ronfard, R., Tran-Thuong, T.: A framework for aligning and indexing movies with their script. In: IEEE International Conference on Multimedia and Expo., Baltimore, USA, July 2003, pp. 21–24 (2003)
Smeaton, A.F., Lehane, B., O’Connor, N.E., Brady, C., Craig, G.: Automatically selecting shots for action movie trailers. In: MIR 2006, pp. 231–238. ACM, New York (2006)
Sundaram, H., Chang, S.-F.: Determining computable scenes in films and their structures using audio-visual memory models. In: ACM Multimedia, pp. 95–104. ACM, New York (2000)
Utiyama, M., Isahara, H.: A statistical model for domain-independent text segmentation. In: Meeting of the Association for Computational Linguistics, pp. 491–498 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ren, R., Misra, H., Jose, J.M. (2010). Semantic Based Adaptive Movie Summarisation. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, YP.P. (eds) Advances in Multimedia Modeling. MMM 2010. Lecture Notes in Computer Science, vol 5916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11301-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-11301-7_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11300-0
Online ISBN: 978-3-642-11301-7
eBook Packages: Computer ScienceComputer Science (R0)