Abstract
In this paper, we propose a framework to consider both the efficiency and effectiveness to achieve the trade-off in performance of Content Based Image Retrieval (CBIR). This framework includes: (i) concept based classification to classify images into different semantic concept groups and narrows down the search domain in retrieval; (ii) Feature selection model to analysis the relationship between queries and concept classes to reduce feature dimension; (iii) Multidimensional vector space indexing structure for real-time access to reduce the retrieval cost. In our experiments, we study the efficiency and the effectiveness of our method using one public collection and compared with one of state of the art methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tesic, J., Xie, L., Yan, R., Jiang, W., Natsev, A., Smith, J.R., Merler, M.: IBM research trecvid-2008 video retrieval system. In: TRECVid 2008, USA (2008)
Hauptmann, A.: Towards a large scale concept ontology for broadcast video. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 674–675. Springer, Heidelberg (2004)
Martinez, J.M.: Mpeg-7 overview (2004), http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. Computer Vision 42(3), 145–175 (2001)
Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: ICCV 2003, October 2003, vol. 2, pp. 1470–1477 (2003)
Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR 2006 workshop, NY, USA, pp. 321–330 (2006)
Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.-M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: ACM MULTIMEDIA 2006, pp. 421–430. ACM, New York (2006)
Tirilly, P., Claveau, V., Gros, P.: Language modeling for bag-of-visual words image categorization. In: CIVR 2008, pp. 249–258. ACM, New York (2008)
Urruty, T., Djeraba, C., Jose, J.M.: An efficient indexing structure for multimedia data. In: Proceedings of ACM MIR 2008, Vancouver, Canada. ACM, New York (2008)
Urruty, T., Djeraba, C., Simovici, D.A.: Clustering by random projections. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 107–119. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feng, Y., Urruty, T., Jose, J.M. (2010). A Novel Retrieval Framework Using Classification, Feature Selection and Indexing Structure. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, YP.P. (eds) Advances in Multimedia Modeling. MMM 2010. Lecture Notes in Computer Science, vol 5916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11301-7_77
Download citation
DOI: https://doi.org/10.1007/978-3-642-11301-7_77
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11300-0
Online ISBN: 978-3-642-11301-7
eBook Packages: Computer ScienceComputer Science (R0)