
Improved Model Checking of Hierarchical SystemsI

Benjamin Aminofa,1, Orna Kupfermana, Aniello Muranob,2

aHebrew University, Jerusalem 91904, Israel.
bUniversità degli Studi di Napoli “Federico II”, 80126 Napoli, Italy.

Abstract

We present a unified game-based approach for branching-time model
checking of hierarchical systems. Such systems are exponentially more suc-
cinct than standard state-transition graphs, as repeated sub-systems are de-
scribed only once. Early work on model checking of hierarchical systems
shows that one can do better than a naive algorithm that “flattens” the
system and removes the hierarchy.

Given a hierarchical system S and a branching-time specification ψ for it,
we reduce the model-checking problem (does S satisfy ψ?) to the problem of
solving a hierarchical game obtained by taking the product of S with an alter-
nating tree automaton Aψ for ψ. Our approach leads to clean, uniform, and
improved model-checking algorithms for a variety of branching-time temporal
logics. In particular, by improving the algorithm for solving hierarchical par-
ity games, we are able to solve the model-checking problem for the µ-calculus
in Pspace and time complexity that is only polynomial in the depth of the
hierarchy. Our approach also leads to an abstraction-refinement paradigm
for hierarchical systems. The abstraction maintains the hierarchy, and is
obtained by merging both states and sub-systems into abstract states.

Keywords: Hierarchical Systems, Model Checking, Branching-time
temporal logics, Two-player games, abstraction-refinement

IThis is a long version of a paper that will appear in the proceedings of VMCAI10,
volume 5944 of Lecture Notes in Computer Science, Elsevier.

Email addresses: benj@cs.huji.ac.il (Benjamin Aminof), orna@cs.huji.ac.il
(Orna Kupferman), murano@na.infn.it (Aniello Murano)

1This work was partially done while the author was visiting Università degli Studi di
Napoli “Federico II”, supported by ESF GAMES project, short visit grant n.2789

2Partially supported by MIUR PRIN Project n.2007-9E5KM8.

Preprint submitted to Information and Computation November 10, 2009

1. Introduction

In model checking, we verify that a system meets its specification by
translating the system to a finite state machine (FSM), translating the spec-
ification to a temporal-logic formula, and checking that the FSM satisfies
the formula [6]. The translation of a high-level description of a system to
an FSM involves a painful blow-up, and the size of the FSM is typically the
computational bottleneck in model-checking algorithms.

There are several sources of the blow-up that the translation involves. A
well-studied source is the ability of components in the system to work in par-
allel and communicate with each other, possibly using variables. Formally,
concurrent FSMs are exponentially more succinct than flat (usual) ones [9].
This has led to extensive research on compositional model checking, where
the goal is to reason about a system by reasoning about its underlying com-
ponents and without constructing an equivalent flat system (c.f., [8, 21]).
Compositionality methods are successfully applied in practice (c.f., [22]), but
it is a known reality that they cannot always work. Formally, the system
complexity of the model-checking problem (that is, the complexity in terms
of the system, assuming a specification of a fixed length) for all common
temporal logics is exponentially higher in the concurrent setting [16]. This
exponential gap is carried over to other related problems such as checking
language-containment and bisimulation — all are exponentially harder in the
concurrent setting [13, 23].

Another source of the blow-up in the translation of systems to FSMs has
to do with the ability of a high-level description of a system to reuse the
same component in different contexts (say, by calling a procedure). The se-
quential setting is that of hierarchical FSMs, where some of the states of the
FSM are boxes, which correspond to nested FSMs. The naive approach to
model checking such systems is to “flatten” them by repeatedly substituting
references to sub-structures with copies of these sub-structures. However,
this results in a flat system that is exponential in the nesting depth of the
hierarchical system. In [5], Alur and Yannakakis show that for Ltl model
checking, one can avoid this blow-up altogether, whereas for Ctl, one can
trade it for an exponential blow-up in the (often much smaller) size of the
formula and the maximal number of exits of sub-structures. In other words,
while hierarchical FSMs are exponentially more succinct than flat FSMs [4],
in many cases the system complexity of the model-checking problem is not
exponentially higher in the hierarchical setting! Thus, even more than with

2

the feature of concurrency, here there is clear motivation not to flatten the
FSM before model checking it.

The results in [5] set the stage to further work on model-checking of hi-
erarchical systems. As it so happened, however, this line of research has
quickly been focused on recursive systems, which allow unbounded nesting
of components. Having no bound on the nesting gives rise to infinite-state
systems. The emergence of software model checking, the natural association
of reusability with (possibly recursive) procedure calls, the challenge and
abstraction that the infinite-state setting involves, and the neat connection
to pushdown automata, have all put recursive systems in the central stage
[1, 2, 3], leaving the hierarchical setting as a special case. This work hopes
to shift some attention back to the hierarchical setting. We suggest a uni-
form game-based approach for model checking such systems, and argue that
the game-based approach enjoys the versatility and advantages it has proven
to have in the flat setting. In particular, the game-based approach leads to
improved model-checking algorithms and to an abstraction-refinement frame-
work for hierarchical systems and Ctl formulas. An important conclusion
of our work is that we should not hurry to give up the finite-state nature
of the hierarchical setting, as it does lead to simpler algorithms, and better
complexities than the recursive setting.

In the flat setting, the game-based approach reduces the model-checking
problem (does a system S satisfy a branching temporal logic specification ψ?)
to the problem of deciding a two-player game obtained by taking the prod-
uct of S with an alternating tree automaton Aψ for ψ [16]. The game-based
approach separates the logic-related aspects of the model-checking problem,
which are handled in the translation of the specifications to automata, and
the combinatorial aspects, which are handled by the game-solving algorithm.
Using the game-based approach, it was possible to tighten the time and space
complexity of the branching-time model-checking problem [16]. We describe
a unified game-based approach for branching-time model checking of hierar-
chical systems. We define two-player hierarchical games, and reduce model
checking to deciding such games. In a hierarchical game, an arena may have
boxes, which refer to nested sub-arenas. As in the flat setting, one can take
the product of a hierarchical system with an alternating tree automaton for
its specification, and model checking is reduced to solving the game obtained
by taking this product. Now, however, the hierarchy of the system induces
hierarchy in the game.

Having introduced the framework, we turn to the two main technical

3

contributions of the paper: a new and improved algorithm for solving hierar-
chical parity games, and an abstraction-refinement paradigm for hierarchical
systems. We now briefly describe both. Consider a hierarchical game G. The
idea behind our algorithm is that even though a sub-arena may appear in
different contexts, it is possible to extract information about the sub-arena
that is independent of the context in which it appears. Formally, for each
strategy of one of the players, we can analyze the sub-arena and extract a
summary function, mapping each exit of the sub-arena to the best color (of
the parity condition) that the other player can hope for, given that the cur-
rent play eventually leaves the sub-arena through this exit. The summary
function is independent of the context and has to be calculated only once.
The algorithm for solving the game G then solves a sequence of flat parity
games, obtained by replacing sub-arenas by simple gadgets that implement
the summary functions.

While hierarchical systems may be exponentially more succinct than
flat ones, they are not immune to the “state explosion problem”, which,
in some circumstances, could completely absorb the flavor of using hierar-
chical state machines. For flat systems, a powerful solution to the state-
explosion problem is based on reasoning about an abstraction of the con-
crete model. In order to guarantee preservation of the branching-time spec-
ification from abstract models to concrete models, two transition relations
have been considered [7, 18]: preservation of universal properties requires an
over-approximation, whereas preservation of existential properties requires
an under-approximation. This is accomplished by using Modal Transition
Systems [11, 14]. We extend this approach to hierarchical state machines
and introduce hierarchical modal transition systems (HMTS, for short) and
hierarchical 3-valued games. We show how to abstract a hierarchical system
and get an HMTS, and how to model check specifications in Ctl. The ab-
straction technique fits into our game-based approach very naturally. Indeed,
already in the flat setting, reasoning about abstractions has the flavor of solv-
ing games [24]. From a technical point of view, combining our algorithm for
the concrete hierarchical setting and the abstraction-refinement solution for
the flat setting [24], is not difficult, and is based on adding to the gadgets
that capture the summary functions a layer in which the players can chose
between winning and not losing (i.e., forcing the game to an unknown-winner
value). We see this as a witness to the neatness of our framework.

Related work. As described above, the formulation of hierarchical sys-
tems as well as the observation that model-checking algorithms for them

4

should not flatten the system, was done in [5]. The work since then was fo-
cused on recursive systems, with the exception of [12, 17, 20]. The closest to
our work here is [12], which proved that the model-checking problem for the
µ-calculus and hierarchical systems is Pspace-complete (as opposed to the
recursive setting, in which µ-calculus model checking is Exptime-complete).
As we specify below, the µ-calculus model-checking algorithm that our ap-
proach induces enjoys several advantages with respect to the one in [12].

The first advantage is the complexity. While the algorithm in [12] is
better than the naive “flattening” approach in terms of space complexity,
no attention is given to its time complexity. We found no specific analysis
of the time complexity of the algorithm in [12]. According to our analysis,
its time complexity is always worse than the “flattening” approach. Indeed,
while the “flattening” approach for model-checking a µ-calculus formula ϕ in
a hierarchical system K is exponential only in the nesting depth of K and the
alternation depth l of ϕ, the algorithm in [12] is super-exponential also in
the formula and in an expression3 that depends on the number of boxes and
exits in sub-structures of K. On the other hand, our approach, which also
gives an algorithm in Pspace, yields an algorithm with a much better time
complexity of (|K| · |ϕ|)l ·2O(|ϕ|)·e·l·log l, where e is the maximal number of exits
in a sub-structure of K. We note that in many designs e is very small (often,
e is constant). Note that our algorithm is not exponential in the number
of boxes in a sub-structure of K, or in the nesting depth (the nesting-depth
factor is subsumed in |K|, in which our algorithm is polynomial). Hence,
beyond having a polynomial space complexity, the time complexity of our
algorithm is usually much better than the one that follows the “flattening”
approach, and in all cases it is much better than the one in [12].

Second, recall that we reduce model-checking to solving hierarchical games.
In particular, µ-calculus model checking is reduced to solving parity games.
Our algorithm for the latter is based on solving a sequence of (non-hierarchical)
parity games. As such, it can benefit from existing and future algorithms and
tools for solving parity games. This has both practical and theoretical ad-
vantages. For example, while it is an easy consequence of our algorithm that
hierarchical parity games over arenas with a constant number of exits can

3More specifically, it is exponential in (w · |ϕ|)2, where w is the maximal calls width of
sub-structures of K, defined by maxi{

∑
b∈Bi

(|exitτi(b)|)}. Note that while the number of
exits |exitτi(b)|, in the sub-structure that a box b refers to, is usually small; the number of
boxes |Bi| can be very big.

5

be solved by solving a polynomial number of parity games, the work in [12]
had to provide a special analysis in order to show the weaker result that such
games are in NP∩co-NP.

Third, the algorithm presented in [12] does not deal directly with hierar-
chical systems. Rather, it considers straight line programs (SLP) generated
by a grammar with five graph rewriting rules. Translating a hierarchical
system to an SLP is not hard, but it involves an application of quadrati-
cally many rules. Beyond the blow-up that such a translation involves, it
messes-up the direct relationship between the structure of the hierarchical
system and the game. This direct relationship is crucial in understanding
the output of the model-checking procedure, by means of counterexamples
or certificates, and in describing an abstraction-refinement paradigm on top
of the game.

Finally, unlike the uniform treatment that our approach suggests, the
algorithm presented in [12] cannot be easily generalized to handle more set-
tings. The uniformity of our approach is reflected both in the fact that it can
optimally handle many logics, and in the fact that it leads to tight complexity
bounds even when we focus on different components of the model-checking
problem. For example, while it is immediate from our algorithm that the
model-checking problem of constant size µ-calculus formulas over hierarchi-
cal systems with a constant number of exits is in Ptime, proving the same
result in [12] required arguments that are orthogonal to the algorithm there,
and are based on Courcelle’s technique for evaluating fixed MSO-formulas
over bounded-width graphs.

2. Preliminaries

2.1. Hierarchical Games and Systems

A hierarchical two-player game is a game played between two players,
referred to as Player 0 and Player 1. The game is defined by means of a
hierarchical arena and a winning condition. The players move a token along
the hierarchical arena, and the winning condition specifies the objectives
of the players, which typically refer to the sequence of states traversed by
the token. A hierarchical arena is a hierarchical FSM in which the state
space of each of the underlying FSMs is partitioned into states belonging to
Player 0 (that is, when the token is in these states, then Player 0 chooses
a successor to which he moves the token) and states belonging to Player 1.
We refer to the underlying FSMs as sub-arenas. Formally, a hierarchical

6

two-player game is a pair G = (V ,Γ), where V = 〈V1,...,Vn〉 is a hierarchical
arena, and Γ is a winning condition. For every 1 ≤ i ≤ n, the sub-arena
Vi = 〈W 0

i ,W
1
i ,Bi, in i, exit i, τi,Ri〉 has the following elements:

• W 0
i and W 1

i are finite sets of states. States in W 0
i belong to Player 0,

and states in W 1
i belong to Player 1. We assume that W 0

i ∩W 1
i = ∅,

and let Wi = W 0
i ∪W 1

i . The state in i ∈ Wi is an initial state4, and
exit i ⊆ Wi is a set of exit-states. We assume that exit1 = ∅, i.e., the
top-level arena V1 has no exits.

• A finite set Bi of boxes. We assume that W1,...,Wn,B1,...,Bn are pair-
wise disjoint.

• An indexing function τi : Bi → {i+ 1,..., n} that maps each box of the
i-th sub-arena to an index greater than i. If τi(b) = j, we say that b
refers to Vj.

• An edge relation Ri ⊆ (
⋃
b∈Bi

({b} × exit τi(b)) ∪Wi) × (Wi ∪ Bi). Let
the pair (u, v) be an edge in Ri, with a source u and a target v. The
source u is either a state of Vi or a pair (b, e), where b is a box of Vi
and e is an exit-state of the sub-arenas that b refers to. The target v
is either a state or a box of Vi.

In a sub-arena, the edges connect states and boxes with one another.
Edges entering a box implicitly lead to the unique initial state of the sub-
arena that the box refers to. On the other hand, an edge exiting a box
explicitly specifies the exit-state it comes out of. Note that the fact that
boxes can refer only to sub-arenas of a greater index implies that the nesting
depth of arenas is finite. In contrast, in the recursive setting such a restriction
does not exist [1].

A parity winning condition Γ for the game maps all states (of all sub-
arenas) to a finite set of colors C = {Cmin,..., Cmax} ⊂ IN. Thus, Γ :

⋃
iWi →

C. For technical convenience we allow Γ to be partial, but require that in
every sub-arena every cycle, as well as every path from an entry to an exit,
has at least one colored state.

4We assume a single entry for each sub-arena. Multiple entries can be handled by
duplicating sub-arenas.

7

A hierarchical structure (hierarchical system) can be viewed as a hierar-
chical arena with a single player. In addition, the structure is defined with
respect to a set AP of atomic propositions, and each state of the structure
is mapped to the set of propositions that hold in it. Formally, a hierarchi-
cal structure over AP is a tuple K = 〈K1,...,Kn〉 of structures, where each
Ki = 〈AP,Vi, σi〉 has a sub-arena Vi with W 1

i = ∅, and a labeling function
σi : Wi×AP → {tt ,ff } that assigns a truth value to a pair (w, p) ∈ Wi×AP ,
which indicates whether the atomic proposition p holds or not in w. For con-
venience, we sometimes abuse notation and write σi(w) to denote the set
{p ∈ AP : σi(w, p) = tt}.

A sub-arena without boxes is flat, and a sub-arena which is flat and has
no exits is simple. A game over a flat (resp. simple) arena is called a flat
(resp. simple) game. The special case of a simple hierarchical structure is the
classical Kripke structure. Each hierarchical arena V can be transformed to
an equivalent flat arena Vf (called its flat expansion) by recursively substi-
tuting each box by a copy of the sub-arena it refers to. Since different boxes
can refer to the same sub-arena, states may appear in different contexts. In
order to obtain unique names for states in the flat arena, we prefix each copy
of a sub-arena’s state by the sequence of boxes through which it was reached.
Thus, a state (b0,..., bk, w) of V f is a vector whose last component w is a state
of V , and the remaining components (b0,..., bk) are boxes that describe its
context. For simplicity, we refer to vectors of length one as elements (that
is, w, rather than (w)).

Formally, given a hierarchical arena V = 〈V1,...,Vn〉, for each sub-arena

Vi we inductively define its flat expansion V f
i = 〈W 0

i
f
,W 1

i
f
, ∅, in i, exit i, ∅,Rf

i〉
as follows.5

• For σ ∈ {0, 1}, the set W σ
i

f ⊆ W σ
i ∪ (Bi × (

⋃n
j=i+1W

σ
j

f)) is defined as
follows:

– If w is a state of W σ
i , then w belongs to W σ

i
f ;

– If b is a box of Vi with τi(b) = j, and the tuple (u1,..., uh) is a
state in W σ

j
f , then (b, u1,..., uh) belongs to W σ

i
f .

• The transition relation Rf
i is defined as follows.

5We note that, unlike the definition of flat structures in [5], our definition of flat arenas
also refers to exits. This is useful in the solution of games.

8

– If (u, v) ∈ Ri, where u ∈ Wi or u = (b, e), where b ∈ Bi and
e ∈ exit τi(b), then if the target v is a state then (u, v) ∈ Rf

i; and if
v is a box then (u, (v, inτi(v))) ∈ Rf

i. Note that (v, inτi(v)) is indeed
a state of W f

i by the second item in the definition of states above.

– If b is a box of Vi, and ((u1,..., uh), (v1,..., vh′)) is a transition of
V f
τi(b)

, then ((b, u1,..., uh), (b, v1,..., vh′)) belongs to Rf
i.

The arena V f
1 is the required flat expansion V f of V . Let W f

i = W 0
i

f ∪
W 1
i

f
. In case K = 〈K1,...,Kn〉 is a hierarchical structure, where each Ki =

〈AP,Vi, σi〉 is a structure over AP , then the flat expansion isKf
i = 〈AP,V f

i , σ
f
i〉,

where the labels are induced by the innermost state. Thus, σf
i : W f

i ×AP →
{tt ,ff } is such that for every p ∈ AP , if w = (u1,..., uh), then σf

i(w, p) =
σj(uh, p), where j is the index of the structure of which uh is a state of. A
hierarchical structure K satisfies a formula ϕ (denoted K |= ϕ) iff its flat ex-
pansion Kfdoes. The hierarchical model-checking problem is to decide, given
a hierarchical structure K and temporal logic formula ϕ, whether K satisfies
ϕ.

The semantics of a game over a hierarchical arena is defined by means
of its flat expansion, and thus the definitions of a play, a strategy, etc. are
essentially the classic definitions for flat games. However, for our purpose, it
is convenient to also consider plays over arenas Vi, for 1 < i ≤ n, which are
not the top level arena V1. Such arenas may have exit nodes, and we adjust
the definitions to deal with these exits. Intuitively, a play of a game over Vi
proceeds by moving a token on the nodes of the flat expansion V f

i , starting at

the initial node in i. If the token is placed on a node s ∈ W 0
i

f
then Player 0

chooses the next move, and if it is placed on a node s ∈W 1
i

f
then Player 1 is

doing the choosing. The available moves are as follows. If s has no successors
in V f

i , and s 6∈ exit i (we call such a node a terminal node), then the play ends;
Otherwise, the player chooses a successor of s and moves the token to this
successor, or, if s ∈ exit i, he may choose instead to move the token “outside”
V f
i , in which case the play also ends. A play of the game is thus a (finite or

infinite) sequence of nodes π = π0, π1,..., namely, the sequence of nodes the
token has traversed during the play, with possibly the symbol out at the end
of a finite sequence (indicating that the token was moved out of the arena).
A play π is initial if π0 = in i; it is maximal if it is (i) initial, and (ii) it is
infinite, or it is finite but it cannot be extended to a longer play. Note that
we sometimes refer to plays as words in (W f)ω + (W f)∗ + (W f)∗ · {out}.

9

Consider a parity winning condition Γ. For a play π, let maxC (π) be
the maximal color that appears infinitely often along π (recall that by our
assumptions an infinite play must have infinitely many colored nodes), or
appears at least once if π is finite and has at least one colored node. A play
is winning for Player 0 if it ends in a terminal node s ∈ W 1

i
f
, i.e., if Player 1

cannot extend the play; or if the play is infinite and satisfies Γ, i.e., maxC (π)
is even. Similarly, a play is winning for Player 1 if it ends in a terminal node
s ∈W 0

i
f
, or if the play is infinite and does not satisfy the winning condition

Γ. A play that ends with out (i.e., because the token was moved outside the
arena) is not winning for either player, and has an undefined value.

A strategy for a player is a function from prefixes of plays ending in one of
his nodes, to the set of nodes plus the action out , telling Player σ what move
to make in order to extend the play. Thus, for σ ∈ {0, 1}, a Player σ strategy
is a partial function ξ : (W f)∗ · W σ

i
f → (W f ∪ {out}), such that for all u · v,

with u ∈ (W f)∗ and v ∈W σ
i

f , we have that ξ(u·v) = out only if v ∈ exit f
i, and

otherwise, (v, ξ(u · v)) ∈ Rf
i. A prefix π0,..., πn is consistent with a strategy

ξ of Player σ, if for all j ≥ 0 it holds that if πj is a Player σ node then
πj+1 = ξ(π0,..., πj). The function is partial as there may be vertices in W σ

i
f

with no successors, and since we do not require it to be defined over plays
that are not consistent with it. A strategy ξ is memoryless if its output does
not depend on the whole prefix of the play, but only on the last position, i.e,
if for all u, u′ ∈ (W f)∗ and all v ∈ W σ

i
f , we have that ξ(u · v) = ξ(u′ · v).

We can thus abbreviate and think of a memoryless strategy for Player σ as a
partial function ξ : W σ

i
f → (W f ∪ {out}). Observe that if b1, b2 ∈ Bi are two

boxes that refer to the same sub-arena Vj, then it is normally not the case
that ξ (even if it is memoryless) behaves in the same way, inside Vj, in both
cases. That is, the choice of how to move inside Vj depends on the context
in which it appears.

It is easy to see that for every two strategies, ξ0 for Player 0 and ξ1 for
Player 1, there is exactly one play consistent with both strategies. Thus,
two strategies induce a play. We denote this play by outcome(ξ0, ξ1). A
strategy ξσ for Player σ is winning , if for all strategies ξ1−σ for Player 1− σ,
the play outcome(ξ0, ξ1) is winning for Player σ. Dually, a strategy ξσ for
Player σ is losing , if there exists a strategy ξ1−σ for Player 1− σ, for which
the play outcome(ξ0, ξ1) is winning for Player 1− σ. Note that since plays
that end with out have an undefined value, a strategy ξσ may be neither
winning nor losing. Also note that if ξσ is not a losing strategy for Player σ,
then all plays agreeing with ξσ that do not end with out are winning for

10

Player σ. If the arena Vi has no exits, i.e., if exit i = ∅, then neither does
V f
i , and the semantics of a game over Vi coincides with the classic definition

for parity games over simple arenas. By [10], parity games are determined
with memoryless strategies over simple arenas, i.e., it is always the case that
one of the players (called the winner of the game) has a memoryless winning
strategy. To solve a game over an arena with no exits is to find the winner
of the game.

Observe that an alternative way of looking at the semantics of a game over
the hierarchical arena Vi is to think of the token as being moved directly on
the nodes of the sub-arenas Vi,...,Vn, using an auxiliary stack to keep track of
the context. Recall that a node s = (b0,..., bk, w) of V f

i is a vector whose last
component w is a node in

⋃n
j=i(Wj), and the remaining components b0,..., bk

are boxes in
⋃n
j=i(Bj) that give its context. Thus, a token that is positioned

on s can be represented by a token positioned on w, with an auxiliary stack
containing b1 · · · bk. Since the arena is hierarchical (and not recursive) the
depth of the stack is bounded.

The size |Vi| of a sub-arena Vi is the sum |Wi| + |Bi| + |Ri|, and the
number of exits of Vi is |exit i|. The size |V| of a hierarchical arena V is
the sum of the sizes of all its sub-arenas Vi, and the number of its exits
exits(V) = maxi(|exit i|) is the maximal number of exits in any of its sub-
arenas. The nesting depth of V , denoted nd(V), is the length of the longest
chain i1, i2,..., ij of indices such that a box of Vil is mapped to il+1. Observe
that each state of the expanded structure is a vector of length at most the
nesting depth, and that the size of Vf can be exponential in the nesting
depth, i.e., Ω(|V|nd(V)).

2.2. Alternating Parity Tree Automata

Let D be a set. A D-tree is a prefix closed subset T ⊆ D∗ such that if
x · c ∈ T , where x ∈ D∗ and c ∈ D, then also x ∈ T . The elements of T
are called nodes, and the empty word ε is the root of T . For x ∈ T , the
nodes x · c ∈ T , where c ∈ D, are the successors of x. A leaf is a node with
no successors. A path of T is a set π ⊆ T such that ε ∈ T and, for every
x ∈ π, either x is a leaf or there is a unique c ∈ D such that x · c ∈ π. For
an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, V 〉 where T ⊆ D∗ is a D-tree
and V : T → Σ maps each node of T to a symbol in Σ.

Alternating tree automata are a generalization of nondeterministic tree
automata [19]. Intuitively, while a nondeterministic tree automaton that
visits a node of the input tree sends exactly one copy of itself to each of

11

the successors of the node, an alternating automaton can send several copies
of itself to the same successor. A Symmetric alternating tree automaton
[15, 25] does not distinguish between the different successors of a node, and
can send copies of itself only in a universal or an existential manner, possibly
with ε-transitions. We use a partition of the state space of the automaton in
order to denote the type of transitions from it. Formally, an APT is a tuple
A = 〈Σ, Q, q0, δ, F 〉, where Σ is a finite input alphabet; Q is a finite set of
states, partitioned into universal (Q∧), existential (Q∨), ε-and (Q(ε,∧)), and
ε-or (Q(ε,∨)) states (we also write Q∨,∧ = Q∨ ∪Q∧, and Qε = Q(ε,∨) ∪Q(ε,∧));
q0 ∈ Q is an initial state; δ : Q×Σ → (Q ∪ 2Q) is a transition function such
that for all σ ∈ Σ, we have that δ(q, σ) ∈ Q for q ∈ Q∨,∧, and δ(q, σ) ∈ 2Q

for q ∈ Qε; and F is an acceptance condition, to be defined later. We assume
that Q contains in addition two special states ff and tt , called rejecting sink
and accepting sink, respectively, such that ∀a ∈ Σ : δ(tt , a) = tt , δ(ff , a) = ff .
The classification of ff and tt is arbitrary, and the acceptance condition F
is defined in such a way that paths in a run tree of A that get stuck in the
accepting (resp. rejecting) sink satisfy (resp. do not satisfy) F . Transitions
from states in Qε launch copies of A that stay on the same input node as
before the transition, while transitions from states in Q∨,∧ launch copies that
advance to sons of the current node.

When a symmetric alternating tree automaton A runs on an input tree
it starts with a copy in state q0 whose reading head points to the root of
the tree. It then follows δ in order to send further copies. For example, if
a copy of A that is in state q ∈ Q(ε,∨) is reading a node x labeled σ, and
δ(q, σ) = {q1, q2}, then this copy proceeds either to state q1 or to state q2, and
its reading head stays in x. As another example, if q ∈ Q∧ and δ(q, σ) = q1,
then A sends a copy in state q1 to every son of x. Note that different copies
of A may have their reading head pointing to the same node of the input
tree. Formally, a run of A on a Σ-labeled D-tree 〈T, V 〉 is a (T ×Q)-labeled
IN-tree 〈Tr, r〉. A node in Tr labeled by (x, q) describes a copy of A in state
q that reads the node x of T . A run has to satisfy r(ε) = (ε, q0) and, for all
y ∈ Tr with r(y) = (x, q), the following holds:

• If q ∈ Q∧ (resp. q ∈ Q∨) and δ(q, V (x)) = p, then for each son
(resp. for exactly one son) x · d of x, there is a node y · i ∈ Tr with
r(y · i) = (x · d, p).

• If q ∈ Q(ε,∧) (resp. q ∈ Q(ε,∨)) and δ(q, V (x)) = {p0,..., pk}, then for
all i ∈ {0..k} (resp. for one i ∈ {0..k}) the node y · i ∈ Tr, and

12

r(y · i) = (x, pi).

A parity condition is a function F : Q→ C, where C = {Cmin,..., Cmax} ⊂
IN is a set of colors. We assume that F (tt) is even, and that F (ff) is odd.
Consider a run 〈Tr, r〉. A path π ⊆ Tr satisfies the acceptance condition F
iff the maximal color appearing infinitely often in the coloring of the states
labeling π is even. Formally, let inf(r|π) ⊆ Q be the set of states that r
visits infinitely often along π. Thus, q ∈ inf(r|π) iff there are infinitely many
y ∈ π such that r(y) ∈ T × {q}. Then, maxC (π) = maxq∈inf(r|π) F (q), and
π satisfies F if maxC (π) is even. The size |C| of C is called the index of
the automaton. A run 〈Tr, r〉 is accepting if all its paths satisfy F . The
automaton A accepts an input tree 〈T, V 〉 if there is an accepting run of A
on 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labeled D-trees
accepted by A. We say that an automaton A is nonempty iff L(A) 6= ∅.
Note that since A is symmetric, the set D of directions of the trees plays no
role in the definition of a run.

2.3. Automata for Temporal Logics

A wide range of branching-time temporal logics can be translated to al-
ternating tree automata. Among the others, here we consider Ctl, Ctl∗,
the modal µ-calculus, and the alternation-free µ-calculus (for a full defini-
tion of the syntax and the semantics of these logics, see [16]). The size of
the automaton, as well as its acceptance condition depend on the particular
logic.

Theorem 1. [10, 16] Given a temporal-logic formula ϕ, it is possible to
construct a tree automaton (either symmetric or asymmetric) Aϕ such that
ÃL(Aϕ) is exactly the set of trees satisfying ϕ. Moreover,

• If ϕ is a Ctl or an an alternation-free µ-calculus formula, then Aϕ is
an alternating parity automaton with O(|ϕ|) states and index 2.

• If ϕ is a Ctl∗ formula, then Aϕ is an alternating parity automaton
with 2O(|ϕ|) states and index 3.

• If ϕ is a µ-calculus formula, then Aϕ is an alternating parity automaton
with O(|ϕ|) states and index O(|ϕ|).

13

It is worth noting that for all the automata Aϕ mentioned above have
the special property that the only transitions that actually depend on the
input letter are transitions that go to the accepting or rejecting sinks, i.e.,
for every a, a′ ∈ Σ, and every q ∈ Q, we have that δ(q, a) 6= δ(q, a′) iff
δ(q, a), δ(q, a′) ∈ {tt ,ff }.

3. The Hierarchical Model-Checking Game

The game-based approach to model checking a flat system K, with re-
spect to a branching-time temporal logic specification ϕ, reduces the model-
checking problem to solving a game obtained by taking the product of K
with the alternating tree automaton Aϕ [16]. In this section, we extend this
approach to hierarchical structures: given a hierarchical system K and an
alternating tree automaton A, we construct a game GK,A, such that Player 0
wins the game iff the tree obtained by unwinding the flat expansion of K is
accepted by A. In particular, when A accepts exactly all the tree models of
a branching-time formula ϕ, the above holds iff K satisfies ϕ. Note that a
naive approach for doing this is to start by constructing the flat expansion
of K and then applying [16]. The whole point, however, is to avoid the expo-
nentially large flat system and work directly in the hierarchical setting. We
focus on the case in which A is an alternating parity tree automaton (APT),
to which µ-calculus formulas are translated.

Given a hierarchical system K = 〈K1,...,Kn〉 and an APT A = 〈Σ, Q, q0,
δ, F 〉, the hierarchical two-player game GK,A = (V ,Γ) for K and A is defined
as follows. The hierarchical arena V has a sub-arena Vi,q for every 2 ≤ i ≤ n
and state q ∈ Q, which is essentially the product of the structure Ki with A,
where the initial state of Ki is paired with the state q of A. For i = 1, we need
only the sub-arena V1,q0 . The hierarchical order of the sub-arenas is consistent
with the one in K. Thus, the sub-arena Vi,q can be referred to by boxes of
sub-arena Vj,p only if i > j. Let Ki = 〈AP,W ′

i ,B′i, in ′i, exit ′i, τ
′
i ,R′

i, σ
′
i〉 and

let A = 〈2AP , Q, q0, δ, F 〉 be an APT with Q partitioned to Q(ε,∧), Q(ε,∨), Q∧,
and Q∨. Then, the sub-arena Vi,q = 〈W 0

i,q,W
1
i,q,Bi,qin i,q, exit i,q, τi,q,Ri,q〉 is

defined as follows.

• W 0
i,q = W ′

i × (Q∨ ∪ Q(ε,∨)), W 1
i,q = W ′

i × (Q∧ ∪ Q(ε,∧)), in i,q = (in ′i, q),
and exit i,q = exit ′i ×Q∨,∧.

• Bi,q = B′i ×Q, and τi,q(b, q) = (τ ′i(b), q).

14

• For a state u = (w, q̂) ∈ W ′
i×Q, if q̂ ∈ Qε and δ(q̂, σ′i(w)) = {p0,..., pk},

then (u, v) ∈ Ri,q iff v ∈ {(w, p0),..., (w, pk)}; and if q̂ ∈ Q∨,∧, then
(u, v) ∈ Ri,q iff v = (w′, δ(q̂, σ′i(w))) and (w,w′) ∈ R′

i.

• For (b, p) ∈ B′i×Q, and an exit (e, q̂) ∈ exit ′τ ′i(b)×Q
∨,∧ of this box, then

(((b, p), (e, q̂)), v) ∈ Ri,q iff v = (w′, δ(q̂, σ′τ ′i(b)(e))) and ((b, e), w′) ∈ R′
i.

The winning condition of the game GK,A is induced by the acceptance
condition ofA. Formally, for each state (w, q) of Vi,q, we have Γ(w, q) = F (q).

We now argue that the model checking problem K |= ϕ can be reduced
to solving the hierarchical game GK,Aϕ . For that, we show that GK,Aϕ is
equivalent to the flat game GKf,Aϕ

. Since, by [16], the model-checking problem
can be reduced to solving the latter, we are done. The proof of the equivalence
between GK,Aϕ and GKf,Aϕ

is based on a bijection between strategies of one
game and strategies of the other. In particular, for every winning strategy
for one of the players in GK,A, there is a corresponding winning strategy for
the same player in GKf,A, and vice versa.

Given a hierarchical system K = 〈K1,...,Kn〉, and an APT A = 〈Σ, Q, q0,
δ, F 〉, consider a state u = (b1,..., bh, w) of Kf. Observe that for every state
q of A, there is a node ((b1,..., bh, w), q) in the arena of GKf,A which rep-
resents a copy of A that is at state q and is reading u. On the other
hand, the flat expansion of the arena of GK,A is richer, and it has a node
((b1, q1),..., (bh, qh), (w, q)) for every sequence q1,..., qh, q of states of A. As
before, such a node represents a copy of A that is at state q and is reading u.
However, it also remembers for each of the boxes b1,..., bh, the states q1,..., qh
that this copy of the automaton was at when it last entered each of these
boxes. It is easy to see that every initial play of GK,A can be transformed into
a play of GKf,A by simply dropping this extra information from every node.
Note that the reverse is also possible since given a node on an initial play of
GKf,A, the states at which the copy of the automaton was, when it entered the
various boxes encoded in this node, can be recovered from previous nodes of
the play. The following lemma formally describes this association between
initial plays of GK,A and initial plays of GKf,A.

Lemma 1. There is a bijection expand from initial plays of GKf,A to ini-
tial plays of GK,A, such that expand preserves the winner of maximal plays.
Moreover, π̂ is an extension of π iff expand(π̂) is an extension of expand(π).

15

Proof 1. Consider an initial play π = π0, π1,... of GKf,A, and note that for
every i we have that πi = 〈(bi,1,..., bi,hi

, wi), qi〉, where bi,1,..., bi,hi
are boxes

of K, wi is a state of K, and qi is a state of A. Let Qin(i, j) be the state
qm, where m is the largest index such that bi,j = bm,hm but bi,j 6= bm−1,hm−1.
That is, m is the last time that π entered the box bi,j. Since π starts at
the entry of the top level arena, m is well defined. Let expand(π, πi) =
〈(bi,1, Qin(i, 1)),..., (bi,hi

, Qin(i, hi)), (wi, qi)〉, and let expand(π) = expand(π, π0),
expand(π, π1),.... Observe that expand(π) is an initial play of GK,A, and that
if π̂ is an extension of π, then expand(π̂) is an extension of expand(π). For
the reverse mapping, let s = 〈(b1, q1),..., (bh, qh), (w, q)〉 be a node of GK,A,
and let contract(s) = 〈(b1,..., bh, w), q〉 be the projection of this node on the
arena of GKf,A.

It is easy to see that the mapping π → expand(π) is one to one. Hence,
to show that expand is a bijection, and contract is its inverse, it is enough to
show that for every initial play π′ of GK,A we have that expand(contract(π′)) =
π′. Consider then an initial play π′ of GK,A, and assume by way of contra-
diction that expand(contract(π′)) 6= π′. Let π = π0, π1,... be the contraction of
π′, and for every i ≥ 0 let πi = 〈(bi,1,..., bi,hi

, wi), qi〉. Let j be the largest in-
dex for which expand(π, πj) = π′j, and observe that since expand(π, π0) =
〈in1, q0〉 = π′0, then j > 0. Let π′j = expand(π, πj) = 〈(bj,1, Qin(j, 1)),
..., (bj,hj

, Qin(j, hj)), (wj, qj)〉. By the definition of the edges of GK,A, there
are four options for the move from π′j to π′j+1:

• The token remained in the same sub-arena as wj. In this case, hj+1 =
hj, and π′j+1 = 〈(bj,1, Qin(j, 1)),..., (bj,hj

, Qin(j, hj)), (wj+1, qj+1)〉. It
follows that for every 1 ≤ l ≤ hj+1 we have that bj,l = bj+1,l and
Qin(j, l) = Qin(j + 1, l).

• The token exited the sub-arena of wj and returned to the calling sub-
arena: In this case, hj+1 = hj − 1, and π′j+1 = 〈(bj,1, Qin(j, 1)),...,
(bj,hj−1, Qin(j, hj − 1)), (wj+1, qj+1)〉. It follows that for every 1 ≤ l ≤
hj+1 we have that bj,l = bj+1,l and Qin(j, l) = Qin(j + 1, l).

• The token entered a new box (b, q). In this case, hj+1 = hj + 1, and
π′j+1 = 〈(bj,1, Qin(j, 1)), ..., (bj,hj

, Qin(j, hj)), (b, q), (wj+1, q)〉. Note
that since K is hierarchical (and not recursive), b cannot be equal to
any of the boxes bj,1,..., bj,hj

. It follows that for every 1 ≤ l ≤ hj we
have that bj,l = bj+1,l and Qin(j, l) = Qin(j + 1, l).

16

• The token exited the sub-arena of wj and immediately entered a new
box (b, q). In this case, hj+1 = hj, and π′j+1 = 〈(bj,1, Qin(j, 1)),...,
(bj,hj−1, Qin(j, hj − 1)), (b, q), (wj+1, q)〉. Note that since K is hier-
archical (and not recursive), b cannot be equal to any of the boxes
bj,1,..., bj,hj−1. It follows that for every 1 ≤ l ≤ hj − 1 we have that
bj,l = bj+1,l and Qin(j, l) = Qin(j + 1, l).

It is not hard to see that in all cases it must be that expand(π, πj+1) = π′j+1,
which is a contradiction to our contrapositive assumption that expand(π, πj+1)
6= π′j+1. It follows that expand is a bijection and that contract is its inverse.
It is left to show that the two mappings preserve the winner of maximal plays.
Given a maximal initial play π of GK,A, note that the winning condition of
GK,A refers only to the sequence of automaton states q0, q1,..., taken from the
right component of the last pair in the nodes of π, and the winning condition
of GKf,A refers to the same sequence of automaton states as found in the nodes
of contract(π). Hence, contract preserves the winner of maximal plays, and,
being its inverse, so does expand.

Theorem 2. Consider a hierarchical system K and a branching-time for-
mula ϕ. The following are equivalent: (i) K satisfies ϕ. (ii) Player 0 has a
winning strategy in the flat game GKf,Aϕ

. (iii) Player 0 has a winning strategy
in the hierarchical game GK,Aϕ.

Proof 2. As stated before, the equivalence of (i) and (ii) is proven in [16].
To prove the equivalence of (ii) and (iii), we show that for every winning
strategy for one of the players in GK,Aϕ there is a corresponding winning
strategy of the same player in GKf,Aϕ

, and vice versa.
Given σ ∈ {0, 1} and a strategy ξ′ for Player σ in GK,Aϕ, Lemma 1 im-

plies that the strategy ξ defined by ξ(π) = s, where s is the last node in the
play contract(expand(π) · ξ′(expand(π))), is a strategy for Player σ in GKf,Aϕ

.
Observe that if π′ is a maximal play according to ξ′, then contract(π′) is
a maximal play according to ξ. Hence, since contract is a bijection that
preserves the winner of maximal plays, it follows that ξ′ is winning for
Player σ in GK,Aϕ iff ξ is winning for Player σ in GKf,Aϕ

. A symmetric ar-
gument shows that ξ is a winning strategy for Player σ in GKf,Aϕ

, iff the
strategy ξ′ defined by ξ′(π′) = s′, where s′ is the last node in the play
expand(contract(π′) · ξ(contract(π′))), is a winning strategy for Player σ in
GK,Aϕ.

17

In Section 4, we solve hierarchical two-player games and show how The-
orem 2 leads to optimal model-checking algorithms for hierarchical systems.

4. Solving Hierarchical Parity Games

In this section we present an algorithm for solving hierarchical parity
games. Consider a game G = (V ,Γ). A naive algorithm for solving the game
would generate the flat expansion of V and solve it. In the flat expansion,
each sub-arena may appear in many different contexts. The idea behind our
algorithm is that even though the sub-arena appears in different contexts,
the effect of the strategies chosen by the players for the segment of the game
inside the sub-arena is independent of the context and can be summarized
efficiently. The effects of every strategy of Player 0 for the segment of the
play inside a sub-arena Vi, can be captured by a summary function mapping
each exit of Vi to the best color that Player 1 can hope for, if he chooses to
respond by directing the token to leave Vi through this exit. The algorithm
for solving the game G = (V ,Γ) then solves a sequence of flat parity games,
obtained by replacing sub-arenas by gadgets that represent the behavior of
Player 0 as a choice among the possible summary functions, and the behavior
of Player 1 as a choice of the exit through which he wants the token to exit
the sub-arena. The gadgets also take into account the possibility that the
game will stay forever in the sub-arena.

We now describe the concept of summary functions in detail. Consider
first a play that enters a box that has a single exit. Each player has one
goal that is independent of the context in which the box appears: to either
win inside the box, or failing that, use a strategy that provides the biggest
possible advantage over the segment of the play that goes through the box.
In the case where the box has multiple exits, the situation is more involved:
if a player cannot force a win inside the box, he is faced with the question
of which exit he should try to force the play to exit through. Depending on
the context in which the box appears, it may be beneficial to force the play
to a specific exit even if that involves letting the other player gain the upper
hand in the path leading to it. Also, in certain situations, none of the players
may force the game to a specific exit, and the strategy a player chooses may
reflect a certain tradeoff between the different colors achieved on the paths
going to the different exits.

In order to describe the relative merit of colors, we define an ordering º0

on colors by letting c º0 c
′ when c is better for Player 0 than c′. Formally,

18

c º0 c
′ if the following holds: if c′ is even then c is even and c ≥ c′; and if c′

is odd then either c is even, or c is also odd and c ≤ c′. We denote by minº0

(maxº0) the operation of taking the minimal (maximal) color, according to
º0, of a finite set of colors. Consider a strategy ξ of Player 0 for a sub-arena
Vi. We define a function gξ : exit i → C ∪ {a}, called the summary function
of ξ, that summarizes the best responses of Player 1 to ξ. 6 Let e ∈ exit i be
an exit node of Vi. If ξ is such that no matter how Player 1 plays, the token
never exits through e, then we set gξ(e) =a. Otherwise, we set gξ(e) to be
the most beneficial color that Player 1 can achieve along all plays that agree
with ξ and exit through e. Formally, let plays(ξ, e) be the set of all plays
in Vi that agree with ξ and exit through e. For every e ∈ exit i we define
gξ(e) =a if plays(ξ, e) = ∅, and gξ(e) = minº0{maxC(π) : π ∈ plays(ξ, e)}.

Recall that if ξ is not a losing strategy for Player 0 then all plays that
agree with ξ and remain inside Vi are winning for Player 0. Hence, if ξ is not
a losing strategy then Player 1 will always direct the token to exit through
some exit e ∈ exit i. Note that Player 1 can only choose e for which gξ(e) 6=a,
and that the choice of e depends on the context in which the sub-arena Vi
appears. A key point in our algorithm is that, for every game G in which the
sub-arena Vi is used, and every Player 0 strategy ξ for Vi, if ξ is not a losing
strategy then gξ captures all the information needed to analyze the influence
of the play inside Vi on G.

Let Summ(Vi) = {g : g is a function from exit i to C ∪ {a}} be the set
of all summary functions7 for strategies of Player 0 over Vi. If Vi has no
exits, then Summ(Vi) contains only the empty summary function ε. Based
on the ordering º0 we defined for colors, we can define a partial order º on
Summ(Vi), by letting g º g′ if for every exit node e of Vi the following holds:
g(e) =a, or g(e) 6=a6= g′(e) and g(e) º0 g

′(e). Observe that if ξ and % are two
Player 0 strategies that are not losing strategies, and gξ º g%, then Player 0
can always choose ξ over %. Given a summary function g ∈ Summ(Vi), we
say that a strategy ξ of Player 0 achieves g if gξ º g; we say that g is feasible
if there is a strategy ξ that achieves it; and we say that g is relevant if it
can be achieved by a memoryless strategy that is not losing. In particular, if
Vi has no exits, deciding whether the empty summary function ε is relevant

6Note that our choice to consider summary functions of Player 0 strategies is arbitrary,
and we could have taken Player 1’s point of view instead.

7We call every g ∈ Summ(Vi) a “summary function” even if there is no Player 0 strategy
whose summary is g.

19

amounts to deciding if it is not losing, i.e., to solving the game over Vi.
We now describe the algorithm for solving a hierarchical parity game. The

outline of the algorithm is described in Algorithm 1. Given a hierarchical
parity game G = (V ,Γ), where V = 〈V1,...,Vn〉, our algorithm solves G by
working its way up the hierarchy, starting with the lowest level sub-arena
Vn. At iteration n ≥ i ≥ 1, the algorithm first calculates the set Mi of
relevant summary functions for strategies of Player 0 over Vi. It does so
by going over all summary functions and checking their relevancy. In order
to check whether a summary function g is relevant, the algorithm solves a
simple parity game Gs

i,g = (Vs
i,g,Γ

s
i,g), which is defined in such a way that

g is relevant iff Player 0 has a winning strategy for Gs
i,g. The arena Vs

i,g is
built from Vi by applying to it two operations: simplify, and loop. Once
the set Mi is found, the algorithm uses it in order to construct a 3-level
DAG structure Hi that reflects Player 0’s choice of strategy for the sub-
arena Vi, and Player 1’s possible responses to this strategy. The gadget Hi,
together with Hi+1,..., Hn which were constructed in previous iterations, is
used in future iterations. Indeed, as detailed below, the essence of the simplify
procedure is to replace a box that refers to a sub-arena Vj by the gadget Hj.
Since the top-level arena V1 has no exits, the only summary function it has is
the empty summary function ε, which, by definition, is relevant iff Player 0
wins G. Hence, the algorithm reduces the problem of solving the hierarchical
game G to the problem of solving the simple parity game Gs

1,ε.

Input: G = (V,Γ), where V = 〈V1,...,Vn〉
Output: true iff Player 0 wins G
for i = n downto 1 do

Mi = ∅
forall g ∈ Summ(Vi) do

Gs
i,g = loop(g, simplify(Vi, Hi+1,..., Hn))

if Player 0 wins Gs
i,g then Mi = Mi ∪ {g}

end
if i > 1 then construct Hi from Vi and Mi

end
return true iff M1 6= ∅

Algorithm 1: Solving a Hierarchical Parity Game.

We now describe the construction of the gadget Hi. Let Mi be the set

20

of all relevant summary functions for Vi. Then, Hi is the following 3-level
DAG:

• The set of nodes of Hi is {p}∪Mi∪(exit i×C). The node p is a Player 0
node, every g ∈ Mi is a Player 1 node, and a node (e, c) ∈ exit i × C
belongs to the same player that e belongs to.

• The set of edges is
⋃
g∈Mi

({(p, g)}∪{(g, (e, g(e))) : e ∈ exit i∧g(e) 6=a}).
• A node (e, c) ∈ exit i × C is colored by c. These are the only colored

nodes.

Finally, we remove from Hi all the nodes that are not reachable from its
root p. Thus, in particular, if Mi = ∅, then p is the only node that remains
in Hi. Intuitively, when the token is at the root p of the gadget Hi, Player 0
chooses a relevant summary function g for Vi, and moves the token to the
node g. In response, Player 1 chooses an exit e ∈ exit i for which g(e) 6=a,
and moves the token to the node (e, g(e)). The color of (e, g(e)) is g(e), which
is the best possible color achievable by Player 1 in any play over Vi that exits
through e, when playing against a Player 0 strategy that achieves g.

Observe that if Mi = ∅, then it must be that all the summary functions in
Summ(Vi) are not relevant, i.e., that all Player 0 strategies for Vi are losing.
Note that this behavior is preserved if we turn all exit nodes of Vi to non-exit
nodes. Hence, from the determinacy of simple parity games it follows that
Player 1 has a winning strategy for Vi, which explains why in this case Hi is
a single terminal Player 0 node. Recall that for every g ∈Mi there exists at
least one non-losing Player 0 strategy ξg that achieves g, and that since ξg is
not losing, every play that agrees with ξg and does not exit Vi is winning for
Player 0. It follows that if for every e ∈ exit i we have g(e) =a (in particular,
if exit i = ∅), then every play that is consistent with ξg cannot exit Vi, and is
thus winning for Player 0. This explains why in such a case the node g is a
terminal Player 1 node.

It is left to describe and explain the operations simplify and loop. We
start with simplify, which simplifies a hierarchical arena Vi by replacing every
box b ∈ Bi by a copy of the gadget Hτi(b). Observe that the hierarchical
nesting of the sub-arenas guarantees that all the boxes in Bi refer to arenas
with an index higher than i, and thus the gadgets required for replacing
them were already constructed in previous iterations. We usually denote
the resulting flat arena simplify(Vi, Hi+1,...Hn) by the shorter notation Vs

i .

21

We now formally define Vs
i . To prevent name clashes between copies of the

same gadget, given a box b ∈ Bi, let Hb be a copy of Hτi(b) with all nodes
renamed by annotating them with b. Replacing b with the gadget Hb is done
by replacing every transition (u, b) ∈ Ri that enters b with a transition (u, pb)
that goes to the root of Hb, and replacing every transition ((b, e), v) ∈ Ri

that exits b with one transition ((e, c)b, v) for every color c for which (e, c)b

is present in Hb. Formally, given Vi = 〈W 0
i ,W

1
i ,Bi, in i, exit i, τi,Ri〉, then

Vs
i = 〈W 0

i
s
,W 1

i
s
, ∅, in i, exit i, ∅,Rs

i〉, and its coloring function Γs
i : W s

i → C
are as follows:

• For σ ∈ {0, 1}, we have that W σ
i

s = W σ
i ∪

⋃
b∈Bi

Hb,σ, where Hb,σ is the

set of Player σ nodes of Hb.

• Rs
i is (W s

i × W s
i) ∩ 〈

⋃
b∈Bi

({(u, pb) : (u, b) ∈ Ri} ∪ {((e, c)b, v) : c ∈
C, e ∈ exit τi(b), ((b, e), v) ∈ Ri} ∪ R(Hb)) ∪ Ri〉, with R(Hb) being the
set of transitions of Hb.

• Γs
i(s) = Γ(s) for s ∈ Wi for which Γ(s) is defined; for every b ∈ Bi and

every (e, c) ∈ exit τi(b) × C we have Γs
i((e, c)

b) = c; otherwise, Γs
i(s) is

undefined.

We now describe the operation loop, used in the process of identifying
relevant summary functions. Given a summary function g over a sub-arena
Vi, the operation loop(g,Vs

i) constructs a simple arena Vs
i,g such that Player 0

wins the associated simple parity game Gs
i,g = (Vs

i,g,Γ
s
i,g) iff g is relevant.

Since the modifications done by loop to its input arena do not concern any
of its boxes (if present), the operations simplify and loop, commute. I.e.,
loop(g, simplify(Vi, Hi+1,..., Hn)) = simplify(loop(g,Vi), Hi+1,..., Hn)).

Let Vi,g = loop(g,Vi). To construct Vi,g from Vi, we add for every exit
node e ∈ exit i a new Player 0 node (e, 0). We color it by g(e) + 1 if g(e)
is odd, we color it by g(e) − 1 if g(e) is even, and we leave it uncolored
if g(e) =a. Also, if g(e) 6=a, we add an edge (e, (e, 0)), and an edge
((e, 0), in i). Finally, we set all states of Vi,g as non-exits. Formally, given
Vi = 〈W 0

i ,W
1
i ,Bi, in i, exit i, τi,Ri〉, then Vi,g = 〈W 0

i,g,W
1,Bi, in i, ∅, τi,Ri,g〉

and its associated coloring function Γi,g : Wi,g → {Cmin − 1,..., Cmax + 1} are
as follows:

• W 0
i,g = W 0

i ∪ (exit i × {0}).
• Ri,g = Ri

⋃
e∈exiti∧g(e)6=a({(e, (e, 0))} ∪ {((e, 0), in i)}).

22

• Γi,g(s) = Γ(s) for s ∈ W 0
i ∪W 1

i for which Γ(s) is defined; Γi,g(e, 0) =
g(e)+1 if g(e) is odd, and Γi,g(e, 0) = g(e)−1 if g(e) is even; otherwise,
Γi,g(s) is undefined.

Note that if Vi has no exits then it has only the empty summary function
ε, and that Vs

i = Vs
i,ε. Thus, in particular, Vs = Vs

1,ε.

Lemma 2. Given a summary function g ∈ Summ(Vi), over a sub-arena Vi,
we have that g is relevant iff Player 0 wins the game Gi,g.

Proof 3. For a sub-arena Vi, and a summary function g ∈ Summ(Vi), let
Vi,g = loop(g,Vi) as defined above. Observe that by replacing every move that
exits Vi through some exit e ∈ exit i, by a move to the node (e, 0), every mem-
oryless Player 0 strategy ξ over Vi induces a memoryless Player 0 strategy
ξ′ over Vi,g, and vice versa. We prove the lemma by showing that ξ is not
losing and achieves g iff ξ′ is winning.

Assume first that ξ′ is winning. Thus, in particular, all plays consistent
with ξ′ that do not visit a node of the form (e, 0) are winning for Player 0.
It follows that all plays consistent with ξ that do not exit Vi are winning
for Player 0, which implies that ξ is not losing. It remains to show that
the summary function gξ of ξ is such that gξ º g. Consider first an exit
e ∈ exit i such that g(e) =a. Since in this case (e, 0) is a terminal Player 0
node, it follows that no play consistent with ξ′ can reach (e, 0). Hence, no
play consistent with ξ can exit Vi through e, and gξ(e) =a. Consider now
the case where g(e) 6=a. Note that in order to show that gξ º g, we have to
show that gξ(e) º0 g(e), i.e., that for every play π = in i · π1 · · · πk · e · out
consistent with ξ that exits through e we have that maxC (π) º0 g(e). Let
π be such a play, and let c′ be the color of (e, 0). Observe that the play
π′ = (in i · π1 · · · πk · e · (e, 0))ω is consistent with ξ′, and since ξ′ is winning
then maxC (π′) is even.

Observe that by the structure of π and π′, either maxC (π) = maxC (π′) >
c′, or maxC (π) ≤ maxC (π′) = c′. Consider first the case where maxC (π) =
maxC (π′) > c′. If g(e) is odd, then since maxC (π′) is even, we have that
maxC (π′) º0 g(e). If g(e) is even, then c′ = g(e)− 1, and since maxC (π′) >
c′, it must be that maxC (π′) ≥ g(e). Since maxC (π′) is even, it follows that
maxC (π′) º0 g(e). Consider now the case where maxC (π) ≤ maxC (π′) = c′.
Since maxC (π′) is even so is c′, and thus, it must be that g(e) is odd and
that c′ = g(e)+1. It follows that either maxC (π) = maxC (π′), in which case

23

maxC (π) is even, or that maxC (π) ≤ g(e). Hence, since g(e) is odd, in both
cases maxC (π) º0 g(e).

Assume now that ξ is not losing and achieves g. It follows that all plays
consistent with ξ that do not exit Vi are winning for Player 0. Observe that,
by the structure of Vi,g, this implies that in order to show that ξ′ is winning
it is enough to show that no play consistent with ξ′ ends in a terminal node
of the form (e, 0), and that all plays that go through a node of the form (e, 0)
infinitely often are winning for Player 0. Consider first an exit e ∈ exit i such
that (e, 0) is a terminal node. It follows that g(e) =a, and since ξ achieves g
no play consistent with ξ can exit Vi through e. Since e is the only predecessor
of (e, 0), then no play consistent with ξ′ can reach (e, 0). Consider now the
case where (e, 0) is not a terminal node (and thus g(e) 6=a). Observe that,
by the structure of Vi,g, all plays that go infinitely often through (e, 0) are
a concatenation of infinitely many finite plays from in i to (e, 0). Hence, to
complete the proof that ξ′ is winning, it is enough to show that for every play
π′ = in i ·π1 · · · πk · e · (e, 0) consistent with ξ′ we have that maxC (π′) is even.
Let π′ be such a play, and observe that the play π = in i · π1 · · · πk · e · out
is a play consistent with ξ that exits through e. Since, by our assumption, ξ
achieves g, then maxC (π) º0 g(e).

Observe that by the structure of π and π′, either maxC (π) = maxC (π′) >
c′, or maxC (π) ≤ maxC (π′) = c′. Consider first the case where maxC (π) =
maxC (π′) > c′. If g(e) is even, then since maxC (π) º0 g(e) we have that
maxC (π) is also even. If g(e) is odd, then c′ = g(e)+1, and thus, maxC (π) >
c′ implies that maxC (π) > g(e). Hence, since maxC (π) º0 g(e) and g(e)
is odd, then maxC (π) is even. Consider now the case where maxC (π) ≤
maxC (π′) = c′, and assume by way of contradiction that c′ is odd. It follows
that g(e) is even and that c′ = g(e) − 1. Since maxC (π) º0 g(e), and g(e)
is even, then maxC (π) ≥ g(e), but this is a contradiction since maxC (π) ≤
maxC (π′) = c′ = g(e)− 1.

Combining Lemma 2 with Theorem 3 we get:

Corollary 1. A summary function g is relevant iff Player 0 wins Gs
i,g.

Observe that the definition of a summary function of a strategy can also
be applied to Player 0 strategies over Vs

i . Since Vi has the same exit nodes as
Vs
i , then the sets of summary functions over Vi and Vs

i coincide, and we can
compare strategy functions over Vi with ones over Vs

i using the relation º.

24

Given a strategy ξ of Player 0 for Vi, we say that a strategy ξ′, of Player 0
for Vs

i , is as good as ξ, when: (i) if ξ is a winning strategy then so is ξ′;
and (ii) if ξ is not a losing strategy then so is ξ′, and gξ′ º gξ. We define
strategies over Vi that are as good as strategies over Vs

i in a symmetric way.
We claim that the following holds:

Lemma 3. For every 1 ≤ i ≤ n, and every memoryless strategy ξ of Player 0
for Vi, there is a memoryless strategy ξ′ for Vs

i that is as good as ξ; and vicev-
ersa.

Before we get to the proof of this lemma, we first need some definitions.
Given a memoryless strategy ξ for Player σ over Vi, and a box b ∈ Bi that
refers to Vj, the restriction of ξ to b, denoted by ξb, is a memoryless strategy
for Player σ over Vj that is obtained by limiting our attention to nodes
inside b, and replacing by out every move in ξ that exits b. Formally, let
s = (b0,..., bk, w) be a node in V f

j , and observe that s′ = (b, b0,..., bk, w) is a
node of V f

i . Let ξ(s′) = (b′0,..., b
′
h, w

′), and define ξb(s) = ξ(s′) if b′0 = b and
there is an edge (w,w′) ∈ Rj (i.e., if ξ does not move the token from s′ outside
of b), and define ξb(s) = out otherwise. Note that the requirement above that
there is an edge (w,w′) ∈ Rj, is to make sure that if the token moved from
an exit of Vj back to its entry by using an edge of Vi of the form ((b, e), b), it
would not be wrongly considered as a possible move inside Vj. It is easy to
see that ξb is indeed a memoryless strategy for Player σ over Vj. Observes
that if b1, b2 ∈ Bi are two different boxes such that τi(b1) = τi(b2) = j, then
it is normally not the case that ξb1 = ξb2 . That is, the choice of how to move
inside the sub-arena Vj may depend on the context in which it appears.

For technical convenience, throughout the proof of Lemma 3, we assume
that Player 0 strategies are defined over all Player 0 nodes. This can be easily
done by directing missing transitions to a special losing terminal Player 0
node, which we will assume is a node that was added to Wi. Note that if
nodes for which the strategy is not defined are not reachable by initial plays,
this change makes no semantic difference. Also note that we keep referring
to nodes for which the strategy is “undefined”, with the understanding that
this refers to the state of affairs before the missing transitions are added.

We break the proof to two sub-lemmas, one for each direction.

Lemma 4. For every 1 ≤ i ≤ n, and every memoryless strategy ξ of Player 0
for Vi, there is a memoryless strategy ξ′ for Vs

i that is as good as ξ.

25

Proof 4. Note that any strategy is as good as a losing strategy. We are thus
left with the case that ξ is not losing. Given a non-losing memoryless strategy
ξ of Player 0 for Vi, we define a memoryless Player 0 strategy ξ′ for Vs

i as
follows. Let s be a Player 0 node of Vs

i , then:

• If s ∈ Wi then: ξ′(s) = ξ(s) if ξ(s) ∈ Wi ∪ {out}, and ξ′(s) = pb if
ξ(s) = (b, inτi(b)) for some b ∈ Bi.

• If s = pb for some b ∈ Bi, then ξ′(s) = gbξb if (b, inτi(b)) is reachable by
some play consistent with ξ, and is otherwise undefined.

• If s = (e, c)b where (e, c) ∈ exit j×C is a node of some gadget Hj, then:
ξ′(s) = ξ(b, e) if ξ(b, e) ∈ Wi ∪ {out}; ξ′(s) = pb

′
if ξ(b, e) = (b′, inτi(b′))

for some b′ ∈ Bi; otherwise, ξ′(s) is undefined.

In the second item in the definition above, recall that gξb is the summary
function of the restriction of ξ to b. Thus, if (b, inτi(b)) is reachable by some
play consistent with ξ, then since ξ is not losing it must be that gξb is relevant,
and thus, gbξb is indeed a node of Vs

i . In the third item in the definition above,
note that if ξ(b, e) is not of one of the two forms given, then it must be that
ξ does not allow the token to exit b through e, in which case (by the way Hj

was constructed, and the definition of a summary function) the node (e, c)b

is not reachable from gbξb, which is its only possible predecessor on plays that
agree with ξ′. Hence, in such cases we can safely leave ξ′(s) undefined.

We now show that ξ′ is as good as ξ. Intuitively, ξ′ is as good as ξ iff
Player 1 can not do better when playing against ξ′ than when playing against
ξ. Formally, it is enough to show that given any maximal play π′ that is
consistent with ξ′ and is not losing for Player 1, there is a corresponding
maximal play π that is consistent with ξ, such that: (i) π is infinite iff π′

is, and if π′ is finite then the last node in π is equal to the last node in π′

(note that we do not consider the special symbol “out” to be a node); (ii)
maxC (π) = maxC (π′).

Let Ω = {pb · gbξb · (e, gξb(e))b : b ∈ Bi, e ∈ exit i, gξb(e) 6=a} be the set of
all paths consistent with ξ′, from roots to leaves of gadgets in Vs

i . Consider
first maximal plays π′ of the form (W ∗

i + Ω∗)ω + (W ∗
i + Ω∗)∗ · exit i · out (we

will later see that all maximal plays consistent with ξ′, that are not losing
for Player 1, are of this form). Given such a play π′, we derive from it the
required play π, by replacing every sub-word x′ = pb ·gbξb · (e, gξb(e))b ∈ Ω of π′

by a word x over V f
i , as follows. Let y be some play consistent with gξb over

26

the arena V f
τi(b)

, that starts in inτi(b) and ends in e, such that the maximal

color along y is gξb(e). Observe that by our definition of a summary function
such a play exists. The word x is obtained by simply appending b as the first
component to each letter of y. I.e., a letter (u1,..., uh) in y becomes the letter
(b, u1,..., uh) in x. Since the only colored node in x′ is the node (e, gξb(e))

b,
and its color is gξb(e), we have that x and x′ have the same maximal color,
and thus maxC (π) = maxC (π′). It is not hard to see that π is indeed a
maximal play consistent with ξ, that it is infinite iff π′ is infinite, and that if
π′ is finite then the last node of π is equal to that of π′.

We now show that every maximal play π′ that is consistent with ξ′ and is
not losing for Player 1 is indeed of the form (W ∗

i +Ω∗)ω+(W ∗
i +Ω∗)∗·exit i·out.

Note that proving this also establishes that ξ′ is well defined, i.e., that no
play consistent with it reaches a node for which ξ′ is undefined (and thus
ends with the special losing terminal node in Wi). By the definition of ξ′

and the structure of Vs
i , we only have to show that π′ is not of the form

(W ∗
i +Ω∗)∗+(W ∗

i +Ω∗)∗ · (Ω1 +Ω2), where Ω1 and Ω2 are the sets of prefixes
of words in Ω of lengths 1 and 2, respectively. Since by our assumption π′ is
maximal and not losing for Player 1, the last node of π′ must be a Player 0
node. Since all words in Ω2 end with a Player 1 node, it follows that π′ cannot
end with a word in Ω2. Assume now that π′ ∈ (W ∗

i + Ω∗)∗, and observe that
by applying the construction above, which replaces every sub-word x′ ∈ Ω
of π′ with a path x ∈ V f

i , we derive a play π that is consistent with ξ. Let
s, s′ be the last nodes of π and π′ (respectively), and recall that s′ must be
a Player 0 node. Observe that if π′ ∈ (W ∗

i + Ω∗)∗, then s′ = s ∈ Wi, or
s′ = (e, gξb(e))

b and s = (b, e), for some b ∈ Bi and e ∈ exit i. Recall that,
by definition, the nodes (e, gξb(e))

b and (b, e) belong to the same player that
owns e. It follows that in both cases, s belongs to the player that owns s′,
and thus it is a Player 0 node. Since we assumed that ξ is not losing (for
Player 0), it must be that π can be extended to a longer play, i.e., that ξ(s)
is defined. Hence, by the definition of ξ′, we also have that ξ′(s′) is defined,
and thus π′ can also be extended, and is not maximal. Finally, to see why
π′ cannot end with a word in Ω1 (i.e., with a node of the form pb), we once
more apply the construction that replaces every sub-word x′ ∈ Ω in π′ with a
path x ∈ V f

i . Furthermore, we replace the last node pb of π′ with (b, inτi(b)).
We thus obtain a play that is consistent with ξ and reaches (b, inτi(b)). By the
definition of ξ′, it follows that ξ′(p) is defined, and thus π′ can be extended
and is not maximal.

27

Lemma 5. For every 1 ≤ i ≤ n, and every memoryless strategy ξ′ of
Player 0 for Vs

i , there is a memoryless strategy ξ for Vi that is as good as ξ′.

Proof 5. Note that any strategy is as good as a losing strategy. We are thus
left with the case that ξ′ is not losing. Consider a non-losing memoryless
strategy ξ′ of Player 0 for Vs

i . For every box b ∈ Bi for which ξ′(pb) is
defined, let gb be the summary function gb = ξ′(pb), and let %b be some (fixed)
arbitrarily chosen memoryless Player 0 strategy for the sub-arena Vτi(b) that

achieves gb. Given s ∈ W 0
i

f
, we define the strategy ξ as follows:

• If s ∈Wi then: ξ(s) = ξ′(s) if ξ′(s) ∈ Wi∪{out}, and ξ(s) = (b, inτi(b))
if ξ′(s) = pb for some b ∈ Bi.

• If s = (b, b1,..., bk, w), where b ∈ Bi, and ξ′(pb) is undefined, then ξ(s)
is also undefined.

• If s = (b, b1,..., bk, w), where b ∈ Bi, and %b(s) 6= out, then ξ(s) = %b(s).

• If s = (b, b1,..., bk, w), where b ∈ Bi, and %b(s) = out, then it must be
that s = (b, e) where e ∈ exit τi(b). Let c = gb(e), then: ξ(s) = ξ′((e, c)b)
if ξ′((e, c)b) ∈ Wi ∪ {out}, and ξ(s) = (b′, inτi(b′)) if ξ′((e, c)b) = pb

′
for

some b′ ∈ Bi.
We now prove that ξ is as good as ξ′. We use a similar argument to

the one used in the proof of Lemma 4. Formally, we show that given any
maximal play π that is consistent with ξ and is not losing for Player 1, there
is a corresponding maximal play π′ that is consistent with ξ′, such that: (i)
π′ is infinite iff π is, and if π is finite then the last node in π′ is equal to the
last node in π (note that we do not consider the special symbol “out” to be a
node); (ii) maxC (π) º0 maxC (π′).

For every b ∈ Bi, let bstates = {b} ×W f
τi(b)

be the set of all states in W f
i

whose first coordinate is b, and let bpaths = {x ∈ (bstates)
∗ : for all 0 ≤ j <

|x| we have that (xj, xj+1) ∈ Rf
i ∧ (xj ∈ W 0

i
f =⇒ xj+1 = ξ(xj))} be the

set of paths inside b that are consistent with ξ. Finally, let Υ = ∪b∈Bi
bpaths.

Consider first maximal plays π of the form (W ∗
i +Υ∗)ω+(W ∗

i +Υ∗)∗ ·exit i ·out
(we will later see that all maximal plays consistent with ξ, that are not losing
for Player 1, are of this form). We say that a sub-word x = πj · · · πk ∈ Υ of
π is maximal, iff (πj−1 · πj · · · πk) 6∈ Υ and (πj · · · πk · πk+1) 6∈ Υ. Observe
that if x = x0 · · · xh is a maximal sub-word of π, then x ∈ bpaths for some box

28

b ∈ Bi, and it represents an entire sequence of moves from the point the token
enters b until it exits it. In particular, it must be that x0 = (b, inτi(b)) and that
xh = (b, e) where e ∈ exit τi(b). Note that π admits a single representation of
the form (W ∗

i + Υ∗)ω + (W ∗
i + Υ∗)∗ · exit i · out, if sub-words in Υ are chosen

to be maximal. Given a play π as above, we derive from it the required
play π′ by replacing every maximal sub-word x ∈ bpaths of π by the word
x′ = pb · gb · (e, gb(e))b. Observe that, by the definition of ξ, the word x
represents a play over V f

τi(b)
that is consistent with %b, and exits through e.

Hence, by the definition of a summary function, maxC (x) º0 g%b(e). Recall
that %b achieves gb and thus g%b(e) º0 gb(e). From transitivity of º0 we
get that maxC (x) º0 g

b(e). Since the only colored node in x′ is the node
(e, gb(e))b, and its color is gb(e), we get that maxC (x) º0 maxC (x′), and
thus overall, maxC (π) º0 maxC (π′). It is not hard to see that π′ is indeed
a maximal play consistent with ξ′, that it is infinite iff π is infinite, and that
if π is finite then the last nodes of π′ and π are the same.

We now show that every maximal play π consistent with ξ, that is not
losing for Player 1, is indeed of the form (W ∗

i +Υ∗)ω+(W ∗
i +Υ∗)∗ ·exit i ·out.

Note that proving this also establishes that ξ is well defined, i.e., that no play
consistent with it reaches a node for which ξ is undefined (and thus ends
with the special losing terminal node in Wi). Given b ∈ Bi, let bω-paths =
{x ∈ (bstates)

ω : for all 0 ≤ j we have that (xj, xj+1) ∈ Rf
i ∧ (xj ∈ W 0

i
f =⇒

xj+1 = ξ(xj))} be the set of infinite paths inside b that are consistent with ξ,
and let Υω = ∪b∈Bi

bω-paths. Note that by the definition of ξ, and the structure
of Vi, we only have to show that π is not of the form (W ∗

i + Υ∗)∗ · Wi +
(W ∗

i + Υ∗)∗ · (Υ + Υω), i.e., that π cannot reach a terminal node in Wi, or
never come out of a nested sub-arena. Assume first that π ∈ (W ∗

i +Υ∗)∗ ·Wi.
Since by our assumption π is maximal and not losing for Player 1, the last
node s ∈ Wi of π must be a Player 0 node. Observe that by applying the
construction above, that replaces every maximal sub-word x ∈ Υ of π with a
3-node path x′ ∈ V ′i, we derive a play π′ that is consistent with ξ′ and ends
with s. Since we assumed that ξ′ is not a losing strategy, and we know that s
is a Player 0 node, it must be that π′ can be extended to a longer play, i.e.,
that ξ′(s) is defined. Hence, by the definition of ξ, we also have that ξ(s)
is defined, and thus π can also be extended, and is not maximal. Assume
now that π ∈ (W ∗

i + Υ∗)∗ · (Υ + Υω), and let π0 · · · πk be the shortest prefix
of π such that the suffix πk+1 · · · is in Υ + Υω. It follows that there is a
box b ∈ Bi such that πk+1 = (b, inτi(b)) and for every j ≥ k we have that

29

πj ∈ bstates. Furthermore, by the definition of ξ, there are only two options:
(i) ξ′(pb) = gb, and the suffix πk+1 · · · of π is a play consistent with %b over
the sub-arena V f

τi(b)
; or (ii) ξ′(pb) is undefined. To see why the first option

is impossible, observe that since %b is not a losing strategy (it achieves the
relevant summary function gb), the suffix πk+1 · · · , and hence also π, is not
losing for Player 0. On the other hand, by our assumption, π is not losing
for Player 1, which is a contradiction (recall that a play that does not end
with out cannot be a tie). To see why the second option is also impossible,
we apply to the prefix π0 · · · πk the construction above that replaces maximal
sub-words x ∈ Υ with 3-node paths x′ ∈ V ′i. We thus derive a play π′ over
Vs
i such that π′ · pb is consistent with ξ′. Since by our assumption ξ′ is not a

losing strategy, the play π′ · pb cannot be losing for Player 0, and thus, since
pb is a Player 0 node, ξ′(pb) must be defined.

Recall that Vs = Vs
1,ε, and thus, by applying Lemma 3 to the arenas V1

and Vs
1, we get that:

Theorem 3. Given a hierarchical parity game G = (V ,Γ), Player 0 wins the
game iff he wins the simple parity game Gs

1,ε = (Vs
1,ε,Γ

s
1,ε).

Analyzing the time and space requirements of our algorithm for solving
hierarchical parity games, we get the following:

Theorem 4. Let G = (V ,Γ) be a hierarchical parity game with |C| colors,
and e = exits(V). Solving G can be done in time 2(|C|·log |V|+O(|C|·e·log |C|), and
it is Pspace-complete.

Proof 6. We start with the time complexity. It is not hard to see that the
runtime of the algorithm is dominated by the time spent in deciding which
summary functions are relevant. For every 1 ≤ i ≤ n, and every summary
function g ∈ Summ(Vi), the algorithm has to solve one simple parity game
Gs
i,g = (Vs

i,g,Γ
s
i,g). The number of summary functions is |Summ(Vi)| = (|C|+

1)|exiti|, and thus, the number of nodes in the gadget Hi is O((|C|+ 1)|exiti|).
Hence, the size of the arena Vs

i,g is Si = |Vi| +
∑

b∈Bi
O((|C| + 1)|exitτi(b)

|) =

|Vi| · O((|C| + 1)exits(V)). Overall, for every 1 ≤ i ≤ n, the algorithm solves
at most (|C|+ 1)exits(V) such simple parity games. By [26], every such game

30

can be solved in time O(S
|C|
i). 8 Therefore, the overall time complexity is

|V||C| · |C|O(|C|·exits(V)).
It is interesting to note that if the number of exits of V is poly-logarithmic

in |V| (and in particular if it is constant), then the number of arenas as well
as their sizes is polynomial in |V|. Thus, solving hierarchical parity games of
this type is not harder then solving simple parity games.

We now proceed to analyze the space complexity, and show that our algo-
rithm can be implemented in space O(nd(V) · (|V| · exits(V) · log |C| + |V| ·
log |V|)), where nd(V) is the nesting depth of V. For every 1 ≤ i ≤ n, and
every summary function g ∈ Summ(Vi), consider the simple parity game
Gs
i,g that the algorithm has to solve. Note that here we can not use just

any parity solver for Gs
i,g, and we have to use one which is space efficient.

The key observation is that the cause of the exponential blow-up in the num-
ber of nodes of Vs

i,g, compared to the hierarchical sub-arena Vi, is the set
of nodes {gb : b ∈ Bi ∧ g ∈ Mτi(b)} (i.e., the nodes of summary functions
found in the different gadgets inside Vs

i,g), and that all nodes in this set are
Player 1 nodes. Hence, the space required to remember a memoryless strat-
egy of Player 0 for Vs

i,g is polynomial in |Vi|, and not exponential. Let E
be the set of edges of Vs

i,g, Let D be the set of its nodes, let P ⊆ D be
the set of its Player 0 nodes, and let PB = {pb ∈ P : b ∈ Bi} be the set
of all nodes in Vs

i,g that are entries (root nodes) of gadgets. Recall that a
memoryless strategy ξ of Player 0 for Vs

i,g is a function ξ : P → D. Note,

however, that it can also be viewed as a pair of functions ξ = (ξ̇, ξ̈) where
ξ̇ : P \ PB → D, and ξ̈ : PB → ∪nj=i+1Mj, where Mj is the set of all relevant
summary functions for Vj. We can over-approximate the set of memoryless
strategies of Player 0 by considering functions ξ̈ : PB → ∪nj=i+1Summ(Vj),
that may assign to a node pb ∈ PB a successor which is a strategy function
that is not necessarily relevant. Given such an over approximation ξ = (ξ̇, ξ̈),
let Gξ = (Vξ, Eξ) be the graph induced by ξ, i.e., Vξ = ξ(P) ∪ (D \ succ(P)),
where succ(P) = {v ∈ D : (u, v) ∈ E only if u ∈ P} is the set of successors
of nodes exclusively in P , and Eξ = {(u, v) ∈ Vξ × Vξ : (u, v) ∈ E}. Note
that since succ(P) contains all the summary function nodes of all the gadgets
in Vs

i,g, the number of nodes in Vξ (that are reachable from inii) is O(|Vi|).
Also, note that if ξ is an actual memoryless strategy of Player 0 (i.e., if for

8Better complexities are known, but for the sake of simplicity we use the O(S|C|i) bound,
and do not bother tightening the complexity here.

31

all pb ∈ P we have that ξ̈(pb) ∈ ∪nj=i+1Mj), then Gξ is a subgraph of Vs
i,g, and

it contains all the possible moves for Player 1.
This leads us to the following space efficient procedure solve(i, g) for solv-

ing the simple parity game over Vs
i,g. The procedure goes (lexicographically)

over all possible over-approximations ξ of memoryless strategies of Player 0
for Vs

i,g. For each such over-approximation, the procedure checks if the graph
Gξ contains a reachable cycle with a maximal color that is odd (this is the
classic procedure used to check if a memoryless strategy of a simple parity
game is losing). If there is such a cycle, the procedure goes on to try the
next over-approximating strategy; otherwise, it checks to see if ξ is a real
strategy or a superfluous over-approximation, by checking for every pb ∈ PB,
whether the summary function ξ(pb) is relevant. This check is done by a
recursive call to solve(τi(b), ξ(p

b)). The procedure solve(i,g) needs to re-
member the currently guessed strategy ξ, which requires space O(|V| · log |V|)
for ξ̇, and O(|Bi| · exits(V) · log |C|) for ξ̈. In addition, the memory required
for the cycle-detection phase over the graph Gξ, is O(log2 |V|). Since the
depth of the recursive calls to solve() is at most the nesting depth of the
hierarchical system, we get that solving the game Gs

1,ε can be done in space
O(nd(V) · (|V| · exits(V) · log |C|+ |V| · log |V|)).

We conclude this section with a theorem that specifies the model-checking
complexity for various branching-time temporal logics. Given a hierarchical
system K and a branching-time temporal logic formula ϕ, the time complex-
ity of model checking K with respect to ϕ follows by applying our algorithm
for solving hierarchical parity games to the game GK,Aϕ = (V ,Γ), where Aϕ
is an APT accepting exactly the set of trees satisfying the formula ϕ. In
particular, we recall that by Theorem 1, if ϕ is a Ctl or an alternation-free
µ-calculus formula, then Aϕ has O(|ϕ|) states and index 2, if ϕ is a Ctl∗

formula, then Aϕ has 2O(|ϕ|) states and index 3, and if ϕ is a µ-calculus for-
mula, then Aϕ has O(|ϕ|) states and index O(|ϕ|). Let h be the number
of states of Aϕ, observe that |V| = |K| · h, exits(V) = exits(K) · h and the
number of sub-arenas of V is h times the number of sub-structures of K. As
we show in Theorem 4 our algorithm for solving hierarchical parity games
can be implemented in polynomial space, which gives an alternative proof
of the Pspace upper bound for the hierarchical µ-calculus model checking
given in [12]. For the other logics, a Pspace upper bound follows by sim-
ply flattening the system and applying the logspace algorithm from [16].
The Pspace lower-bound for all these logics follows from the known result

32

about Ctl [5]. Note that for the logic Ctl, the time complexity of the
model-checking problem was already known and our algorithm suggests an
alternative to the one in [5]. For the other logics, our approach leads to
improved time complexities. It is interesting to note that for all branching-
time temporal logics we consider, the hierarchical setting is easier than the
recursive one.

Theorem 5. Consider a hierarcical system K and a specification ϕ for it.
Let e be the number of exits of the system, and l be the alternation depth of
ϕ.

• For the µ-calculus, the model checking problem is PSPACE-complete
and can be solved in time (|K| · |ϕ|)l · 2O(|ϕ|)·e·l·log l.

• For Ctl and the alternation-free µ-calculus, the model-checking prob-
lem is PSPACE-complete and can be solved in time 2(2 log |K|+O(|ϕ|)·e).

• For Ctl∗, the model-checking problem is PSPACE-complete and can
be solved in time 2(3 log |K|+2O(|ϕ|)·e).

5. An Abstraction-Refinement Paradigm

In [24], Shoham and Grumberg defined 3-valued games and used them to
describe an abstraction-refinement framework for CTL. In this section, we lift
their contribution to hierarchical systems. As we show, the idea of summary
functions can be applied also for solving hierarchical 3-valued games. Due to
the lack of space, we describe here in detail the new notions of hierarchical 3-
valued games and abstractions, and give only the idea behind the algorithm.
In fact, once the notions are defined, then combining the algorithm in Sec-
tion 4 for the concrete hierarchical setting, and the game-based approach to
abstraction-refinement for the flat setting [24], into a game-based approach
to abstraction-refinement of hierarchical systems, is not technically difficult.
Essentially, the idea is as follows. In a 2-valued game, the goal of a player is
to win. In a 3-valued game, the goal of a player is to win or (in case he cannot
win) not to lose (that is, force the game to an “unknown” winning value).
Accordingly, the lifting of algorithm in Section 4 to the 3-valued setting is
based on adding a layer to the gadgets Hi described there; a layer in which
Player 0 chooses between winning and not losing.

33

As in the flat setting, abstraction is based on merging sets of states of the
concrete system into abstract states. What makes the hierarchical setting
interesting is the fact that now it is possible to merge also boxes. Consider
a (concrete) hierarchical structure. A sub-structure typically stands for a
function, and a call to a function g from within another function f is modeled
by a box inside the sub-structure modeling f that refers to the sub-structure
modeling g. The values of the local variables of f are typically different in
different calls to g. Thus, the source of complexity is not the number of
sub-structures, and rather it is the number of states and boxes in each sub-
structure. Accordingly, our abstraction does not try to merge sub-systems
and contains one abstract sub-system for each concrete sub-system. Our
abstraction does merge sets of concrete states into a single abstract state
and sets of concrete boxes (referring to the same structures) into a single
abstract box.

A hierarchical 3-valued game is similar to a hierarchical game, only that
there are two transition relations Rmust i and Rmay i, referred to as the must
and may transitions. The transitions are defined as Ri in a hierarchical
game and satisfy Rmust i ⊆ Rmay i. A hierarchical modal transition system
(HMTS) over AP is then similar to a hierarchical system, only that, again,
there are both must and may transitions, and the labeling function σi :
Wi×AP → {tt ,ff ,⊥} can map an atomic proposition also to ⊥ (unknown).
Note that, equivalently, we could have defined HMTS by adding hierarchy
to the MTS of [18].

Given a (concrete) hierarchical systemK = 〈K1,...,Kn〉, withKi = 〈AP,Wi,
Bi, in i, exit i, τi,Ri, σi〉, an abstraction of K is an HMTS M = 〈MA

1 ,...,MA
n 〉,

where for every 1 ≤ i ≤ n, the sub-modelMA
i = 〈AP,WA

i ,BAi , inAi , exitAi , τ
A
i ,

Rmust i,Rmay i, σ
A
i 〉 of M is an abstraction of the sub-structure Ki, defined

as follows. The set of abstract states is WA
i ⊆ 2Wi , and it forms a partition

of Wi. The set of abstract boxes is BAi , it forms a partition of Bi, and an ab-
stract box contains only concrete boxes that refer to the same sub-structure.
Thus, if b, b′ ∈ ba ∈ BAi , then τi(b) = τi(b

′). The latter guarantees that the
indexing function τAi : BAi → {i+1,..., n}, defined by τAi (ba) = τi(b), for some
b ∈ ba, is well defined. The initial state inAi is such that in i ∈ inAi . The set
of abstract exits exitAi ⊆ WA

i is such that ea ∈ exitAi iff ea ∩ exiti 6= ∅. Thus,
the abstract initial state contains the concrete initial state, and an abstract
exit contains at least one concrete exit. The transition relations Rmay i and
Rmust i are subsets of (

⋃
b∈BA

i
({b}×exit τA

i (b))∪WA
i)×(WA

i ∪BAi), and are over-

34

and under-approximations of the concrete transitions. Given wa = (ba, ea) ∈⋃
ba∈BA

i
({ba} × exit τA

i (ba)), we write wc ∈ wa if wc = (bc, ec), bc ∈ ba, and

ec ∈ ea. Using the above notation, we have that (wa, wa
′
) ∈ Rmay i if there

exist wc ∈ wa and w′c ∈ wa′ such that (wc, w
′
c) ∈ Ri; and (wa, wa

′
) ∈ Rmust i

only if for all wc ∈ wa there exists w′c ∈ wa′ such that (wc, w
′
c) ∈ Ri. Finally,

an atomic proposition holds (does not hold) in an abstract state if it holds
(does not hold) in all the concrete states in it; otherwise, its truth value is
undefined.

As shown for hierarchical systems, an HMTS M can be translated to a
flat modal transition system (MTS) Mf by means of the flattening operation
(since we only consider abstractions in which all the concrete boxes in an
abstract box refer to the same structure, the flattening described for concrete
systems can indeed be applied). The semantics of a temporal logic formula
ϕ over M is thus simply defined to be the semantics of ϕ over Mf . For the
latter, we use the 3-valued semantics introduced in [14]. The idea is that
since may transitions over-approximate concrete transitions, they are used
to verify universal formulas or to refute existential formulas. Dually, since
must transitions under-approximate concrete transitions, they are used to
verify existential formulas or to refute universal formulas. We use [MA |= ϕ]
to denote the truth value (in {tt ,ff ,⊥}) of ϕ in MA. Applying the same
considerations applied to MTSs [11], it is not hard to see that if an HMTS
MA abstracts a hierarchical structure K, then [MA |= ϕ] = tt(ff) implies
that K |= ϕ (resp. K 6|= ϕ).

Given an HMTS M, and a Ctl formula ϕ, we reduce the problem of
deciding the value of [MA |= ϕ], to solving a 3-valued game GM,Aϕ obtained
by taking the product of M with the weak alternating tree automaton Aϕ.
The reason we restrict attention to Ctl formulas is that taking the product of
an HMTS with a weak automaton that corresponds to a Ctl formula, there is
a distinction between information lost inM due to atomic propositions whose
value is unknown and information lost due to may and must transitions.
Indeed, the states of the weak automaton are associated with either atomic
propositions (in which case only the first type of missed information should
be taken into an account) or with a subformula of the form AX or EX
(where only the second type should be taken into an account). Furthermore,
in the second case, the game is in either a universal (AX) or existential (EX)
mode, so players can proceed along the must and may transitions in their
attempt to prove or refute ϕ.

35

Now, as in [24], both players try to either prove or refute ϕ, and winning
strategies must be consistent: all transitions taken during a play are must
transitions (note that the consistency requirement applies only to winning
strategies; the opponent can take also may transitions). Also, a winning
strategy cannot end in a state associated with an atomic proposition whose
value is unknown. It may be that none of the players have a winning strategy,
in which case the value of the game is ⊥. As described in Section 3 for
concrete systems, the hierarchy in the system induces the hierarchy in the
product game.

We define GM,Aϕ = (V ,Γ) as follows. The arena V is different from that
of the concrete games considered in Section 3 in two aspects. First, since M
has both may and must transitions then so does V . Second, since whether or
not an atomic proposition holds at a state of M may be unknown, and the
moves of the automaton Aϕ depend on this information, we have to define
the transitions of the arena accordingly. Formally, given an HMTS M =
〈M1,...,Mn〉 and an APT A = 〈Σ, Q, q0, δ, F 〉, the hierarchical two-player
game GM,A = (V ,Γ) for M and A is defined as follows. The hierarchical
arena V has a sub-arena Vi,q for every 2 ≤ i ≤ n and state q ∈ Q. For
i = 1, we need only the sub-arena V1,q0 . The hierarchical order of the sub-
arenas is consistent with the one in K. Thus, the sub-arena Vi,q can be
referred to by boxes of sub-arena Vj,p only if i > j. Let MA

i = 〈AP,WA
i ,

BAi , inAi , exitAi , τ
A
i ,Rmust ′i,Rmay ′i, σ

A
i 〉 and let A = 〈2AP , Q, q0, δ, F 〉 be an

APT with Q partitioned to Q(ε,∧), Q(ε,∨), Q∧, and Q∨. The sub-arena Vi,q =
〈W 0

i ,W
1
i ,Bi, in i, exit i, τi,Rmust i,Rmay i〉 is defined as follows.

• W 0
i = WA

i ×(Q∨∪Q(ε,∨))∪{a}, W 1
i = WA

i ×(Q∧∪Q(ε,∧)), in i = (inAi , q),
and exit i = exitAi ×Q.

• Bi = BAi ×Q, and τi((b, q)) = (τAi (b), q).

• For Rx ∈ {Rmust i,Rmay i}, the relation Rx contains all pairs (u, v)
that satisfy the following. Let u = (w, q) or u = ((b, q′′), (w, q)).

1. If δ(q, {p ∈ AP : σAi (w, p) = tt}) 6= δ(q, {p ∈ AP : σAi (w, p) 6=
ff }), then v = ⊥;

2. Otherwise, if q ∈ Qε and δ(q, σAi (w)) = (p0, p1), then v ∈ {(w, p0),
(w, p1)};

3. Otherwise, if q ∈ Q∨,∧, then v = (w′, δ(q, σAi (w))) and either
(w,w′) ∈ Rx, if u = (w, q), or ((b, w), w′) ∈ Rx, otherwise.

36

Note that the definition above is simply a technical merge of the con-
struction of Section 3, and the one in [11].

As for concrete systems, the coloring of states is induced by the acceptance
condition of the automaton, i.e., for each state (w, q) of a sub-arena Vi,q, we
have Γ(w, q) = F (q). However, in order to accommodate the possibility
that [MA |= ϕ] = ⊥, we need to modify winning condition. Intuitively, the
players use must-transitions in order to win the game and may transitions in
order to prevent the other player from winning. As a result it is possible that
none of the players wins the play, i.e. the play ends with a tie. Formally,
a play is winning for Player 0 if it ends in a terminal node that belongs to
Player 1; or if the play is infinite and satisfies Γ. Similarly, a play is winning
for Player 1 if it ends in a terminal node that belongs to Player 0 (other than
⊥), or if the play is infinite and does not satisfy the winning condition Γ. In
all other cases the play is a tie. In light of the above, it is not hard to see
that we have the following theorem:

Theorem 6. Given an HMTS M and a Ctl formula ϕ, let GM,Aϕ be the
product of M with Aϕ. Then:

• Player 0 has a winning strategy in GM,Aϕ iff [M |= ϕ] = tt .

• Player 1 has a winning strategy in GM,Aϕ iff [M |= ϕ] = ff .

• None of the players have a winning strategy in GM,Aϕ iff [M |= ϕ] = ⊥.

5.1. Solving the Game GM,Aϕ

The game GM,Aϕ can be solved by adapting the algorithm defined in
Section 4 in the following way. Recall that in a game played over a concrete
arena each player has only one goal: to try and win. On the other hand, since
a play over an abstract arena may be a tie, a player may either try to win, in
which case it only uses must transitions, or it may try not to lose, in which
case it can also use may transitions. Consider a strategy ξ of Player 0 for an
abstract sub-arena Vi, to fully capture the possible responses of Player 1 to
ξ, we have to associate with ξ two summary functions: gmustξ and gmayξ . The
function gmustξ captures the possible responses of Player 1 if it only uses must
transitions (i.e., it tries to win), while gmayξ captures the possible responses
of Player 1 if it uses may transitions (i.e., it tries not to lose). Note that
whether Player 0 uses only must transitions or not, is specified by ξ. For
every x = (x0, x1) ∈ {may,must} × {may,must} we say that a summary

37

function g is x-feasible (x-relevant) if it is feasible (relevant) when Player 0
uses only x0 transitions, and Player 1 uses only x1 transitions. It is easy to
see that by limiting attention to only the specified types of transitions, the
algorithm presented earlier for deciding whether a summary function (over
a concrete arena) is relevant can be used to decide if a summary function is
x-relevant. For every x ∈ {may,must} × {may,must}, let Mx

j be the set of
all x-relevant summary functions for Vj. Observe that Mx

j ⊆ My
j if y was

obtained from x by changing a must to a may.
In order to reflect the players’ choice whether or not to use only must

transitions, we adjust the construction of the gadget Hj, which is used to
replace a sub-arena Vj, to produce the following 4-level DAG structure:

• Its set of nodes is
{p, tmay, tmust} ∪M (may,may)

j ∪ (exit j × C).

• The node p is a Player 1 node, tmay and tmust are Player 0 nodes, every
g ∈M (may,may)

j is a Player 1 node, and a node (e, c) ∈ exit j×C belongs
to the same player that e belongs to.

• Its set of may edges is
{(p, tmay}⋃

g∈M(may,may)
j

{(tmay, g)}⋃
g∈M(may,must)

j
{(tmust, g)}

• Its set of must edges is
{(p, tmust)}⋃

g∈M(must,may)
j

{(tmay, g)}⋃
g∈M(must,must)

j
{(tmust, g)}⋃

g∈M(may,may)
j

{(g, (e, g(e))) : e ∈ exit j ∧ g(e) 6=a}

• A node (e, c) ∈ exit j × C is colored by c. These are the only colored
nodes.

Intuitively, at the entrance p Player 1 makes the choice whether he wants
to only use must transitions, in which case he takes the must transition to
tmust, or to use may transitions, in which case he takes the may transition
to tmay. Note that if Player 1 has a winning strategy using only must transi-
tions (and Player 0 is not limited) he would surely use it; otherwise, Player 0
either has a winning strategy or it can force a tie, and thus Player 1 can only
lose by limiting itself to must transitions, and it would decide to use may
transitions. Since this line of reasoning is independent of the specific strat-
egy that Player 0 may choose, we are justified in assuming that Player 1

38

makes this choice upfront. From the node tmust, Player 0 chooses a sum-
mary function node g that reflects its strategy for the sub-arena Vj. If g
is (must,must)-relevant then this transition is a must transition, reflecting
the fact that Player 0 can achieve g using only must transition for his moves
inside the sub-arena Vj; otherwise, g is only (may,must)-relevant, and the
transition is a may transition that is not a must transition. Observe that
there are no edges from tmust to g if g is not (may,must)-relevant (and is
only (may,may)-relevant), since moves from tmust must reflect the fact that
Player 1 chooses to limit itself to must transitions inside Vj. The possible
moves from the node tmay follow the same reasoning. Finally, as for concrete
games, Player 1 can move from a node g to any node (e, g(e)) for which
g(e) 6=a. Note that all such transitions are must transitions since both play-
ers’ choices whether or not to use may transitions are already reflected by
the preceding moves (from p to tmust or tmay, and from there to g).

A very important feature of our construction above is that the gadgets
used to replace boxes bare a direct and very natural connection with the
abstract hierarchical system that is being model checked. To see this con-
nection, consider for example the case of model checking a Ctl formula ϕ.
The states of the automaton Aϕ are sub-formulas of ϕ, and the nodes of a
sub-arena Vi,q of the membership game are pairs consisting of a state s ∈ WA

i

of the abstract HMTS, and a sub-formula ψ. The node (s, ψ) is an exit of the
sub-arena iff s is an exit of the sub-structure VAi . Intuitively, when the token
is placed on the node (s, ψ), Player 0 (Player 1) has a winning strategy iff it
can prove that ψ holds (does not hold) at the state s of the sub-structure (in
the current context). Observe that for Ctl we need just two colors, {1, 2},
and thus a summary function g over Vi,ψ assigns to every exit pair (e, ψ′),
where e is an exit of VAi , and ψ′ a sub-formula in the closure of ψ, a value
in {1, 2,a}. When Player 0 moves the token to a node g in the gadget that
replaces a box that refers to the sub-arena Vi,ψ, it essentially claims that it
can prove that ψ holds at the initial state of the sub-structure Vi, and that
this proof depends on certain assumptions as to which sub-formulas of ψ hold
at which exit of Vi,ψ (which depends on the context of this reference to Vi,ψ)
as specified by the context function g. The fact that we limit the gadgets to
use only relevant summary functions means that Player 0 is only allowed to
move to g if it can indeed prove that ψ holds at the initial state of the sub-
structure Vi under these assumptions. If g(e, ψ′) =a, it means that Player 0
makes no assumptions as to whether or not ψ′ holds at e; if g(e, ψ′) = 2, it
means that Player 0 assumes that ψ′ holds at e; and if g(e, ψ′) = 1, it means

39

that Player 0 assumes that ψ′ holds at e, and that he must prove it without
forming a cycle that re-enters the gadget (the case of g(e, ψ′) = 1 is only
possible if ψ = ψ′ = θUθ′ is an until formula, and such a cycle corresponds
to trying to delay the forever the satisfaction of θ′). When Player 1 moves
the token from the node g, to ((e, ψ′), g(e, ψ′)), it has the intuitive meaning
that it wants Player 0 to make good on his word and actually prove that in
the current context ψ′ holds at the exit e of VAi .

The discussion above not only demonstrates that a natural and direct
connection is maintained between the gadgets and the underlying model-
checking problem, but also that the gadgets themselves can be a site for the
following form of information abstraction. Instead of including in a gadget Hi

all the relevant summary functions, one can include only summary functions
that assign the value a to a given subset of the exits. Note that in this case
we must also add a move from tmust and tmay to the special node a of the
sub-arena, to allow Player 0 to force a tie in case he is not happy with this
limited choice of summary-functions. By considering only a subset of the
summary functions one can drastically reduce the number of nodes in the
gadget. In fact, we believe that in many cases one can consider summary
functions that assign a to almost all the exits. The reason for this optimism is
that the hierarchical structure of the system usually reflects a corresponding
hierarchical division of responsibility. Thus, in many cases, certain sub-
structures will be responsible for satisfying certain parts of the specification.
Thus, exits of the form (e, ψ′), where the sub-formula ψ′ should by design
be satisfied inside the sub-structure that the gadget represents (or that have
a disjunctive alternative that should be satisfied inside the sub-structure),
should be assigned the value a. It is interesting to note that if the formula
fails to validate when considering only summary functions that assign a to
such exits, but does validate when considering all summary functions, then
there is a bug in the sense that the designer’s beliefs about the division of
work between the different sub-structures in the system is wrong.

References

[1] Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T. W., Yan-
nakakis, M., 2005. Analysis of recursive state machines. ACM TOPLAS
27 (4), 786–818.

[2] Alur, R., Chaudhuri, S., Etessami, K., Madhusudan, P., 2005. On-the-

40

fly reachability and cycle detection for recursive state machines. In:
TACAS’05. LNCS 3440. Springer, pp. 61–76.

[3] Alur, R., Etessami, K., Yannakakis, M., 2001. Analysis of recursive state
machines. In: CAV’01. LNCS 2102. Springer, pp. 207–220.

[4] Alur, R., Kannan, S., Yannakakis, M., 1999. Communicating hierarchi-
cal state machines. In: ICALP’99. LNCS 1644. Springer, pp. 169–178.

[5] Alur, R., Yannakakis, M., 2001. Model checking of hierarchical state
machines. ACM Trans. Program. Lang. Syst. 23 (3), 273–303.

[6] Clarke, E., Grumberg, O., Peled, D., 1999. Model Checking. MIT Press.

[7] Dams, D., Gerth, R., Grumberg, O., 1997. Abstract interpretation of
reactive systems. ACM Trans. Program. Lang. Syst. 19 (2), 253–291.

[8] de Roever, W.-P., Langmaack, H., Pnueli, A. (Eds.), 1998. Composition-
ality: The Significant Difference. Pr. of Compositionality Work. LNCS
1536. Springer.

[9] Drusinsky, D., Harel, D., 1994. On the power of bounded concurrency
I: Finite automata. J. of the ACM 41 (3), 517–539.

[10] Emerson, E., Jutla, C., 1991. Tree automata, µ-calculus and determi-
nacy. In: FOCS’91. pp. 368–377.

[11] Godefroid, P., Jagadeesan, R., 2002. Automatic abstraction using gen-
eralized model checking. In: CAV. LNCS 2404. Springer, pp. 137–150.

[12] Göller, S., Lohrey, M., 2005. Fixpoint logics on hierarchical structures.
In: FSTTCS’05. LNCS 3821. Springer, pp. 483–494.

[13] Harel, D., Kupferman, O., Vardi, M., 2002. On the complexity of veri-
fying concurrent transition systems. J. of Inf. & Comp. 173, 1–19.

[14] Huth, M., Jagadeesan, R., Schmidt, D. A., 2001. Modal transition sys-
tems: A foundation for three-valued program analysis. In: ESOP. LNCS
2028. Springer, pp. 155–169.

[15] Janin, D., Walukiewicz, I., 1995. Automata for the modal µ-calculus and
related results. In: MFCS’95. LNCS 969. Springer-Verlag, pp. 552–562.

41

[16] Kupferman, O., Vardi, M., Wolper, P., 2000. An automata-theoretic
approach to branching-time model checking. J. of the ACM 47 (2), 312–
360.

[17] La Torre, S., Napoli, M., Parente, M., Parlato, G., 2008. Verification of
scope-dependent hierarchical state machines. Inf. Comput. 206 (9-10),
1161–1177.

[18] Larsen, K. G., Thomsen, B., 1988. A modal process logic. In: LICS.
IEEE Computer Society, pp. 203–210.

[19] Muller, D., Schupp, P., 1987. Alternating automata on infinite trees. J.
of Theor. Comp. Sc. 54, 267–276.

[20] Murano, A., Napoli, M., Parente, M., 2008. Program complexity in
hierarchical module checking. In: LPAR’08. LNCS 5330. Springer, pp.
318–332.

[21] Pnueli, A., 1985. In transition from global to modular temporal reason-
ing about programs. In: Apt, K. (Ed.), Logics and Models of Concurrent
Systems. Vol. F-13 of NATO Advanced Summer Institutes. Springer, pp.
123–144.

[22] Qadeer, S., 2008. Taming concurrency: A program verification perspec-
tive. In: CONCUR’08. LNCS 5201. Springer, p. 5.

[23] Rabinovich, A., 1997. Complexity of equivalence problems for concurrent
systems of finite agents. J. of Inf. & Comp. 139 (2), 111–129.

[24] Shoham, S., Grumberg, O., 2003. A game-based framework for CTL
counterexamples and 3-valued abstraction-refinement. In: CAV’03. pp.
275–287.

[25] Wilke, T., 1999. CTL+ is exponentially more succinct than CTL. In:
FSTTCS’99. LNCS 1738. Springer-Verlag, pp. 110–121.

[26] Wilke, T., 2001. Alternating tree automata, parity games, and modal
µ-calculus. Bull. Soc. Math. Belg. 8 (2).

42

