Abstract
In the recent past composability has emerged as a key requirement for various distributed protocols. It is not enough for a protocol to be robust when it runs in isolation or in a “stand-alone” setting but it should be robust even in an environment where several copies of the same protocol or other protocol(s) are running simultaneously. In this work, we investigate the composability for protocols that tolerate a bounded adversary modeled as a probabilistic polynomial time Turing machine. We examine composability of protocols for two fundamental problems in distributed computing - reliable unicast and reliable broadcast. We show that any composable protocol – for reliable unicast tolerating an adversary, that corrupts up to any t nodes, requires 2t + 1 connectivity and for reliable broadcast tolerating an adversary, that corrupts up to any t nodes, requires n > 3t and 2t + 1 connectivity.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmission. JACM 40(1), 17–47 (1993)
Franklin, M., Wright, R.: Secure Communication in Minimal Connectivity Models. Journal of Cryptology 13(1), 9–30 (2000)
Sayeed, H., Abu-Amara, H.: Perfectly Secure Message Transmission in Asynchronous Networks. In: IPDPS (1995)
Srinathan, K., Raghavendra, P., Rangan, C.P.: On proactive perfectly secure message transmission. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, Springer, Heidelberg (2007)
Franklin, M., Yung, M.: Secure Hypergraphs: Privacy from Partial Broadcast. In: STOC, pp. 36–44 (1995)
Wang, Y., Desmedt, Y.: Secure Communication in Multicast Channels: The Answer to Franklin and Wright’s Question. Journal of Cryptology 14(2), 121–135 (2001)
Desmedt, Y.G., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)
Srinathan, K., Rangan, C.P.: Possibility and complexity of probabilistic reliable communications in directed networks. In: PODC (2006)
Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)
Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)
Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)
Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for distributed consensus. J. ACM 34(1), 77–97 (1987)
Dolev, D.: The byzantine generals strike again. Technical report, Stanford, CA, USA (1981)
Fitzi, M., Maurer, U.: From partial consistency to global broadcast. In: STOC 2000, pp. 494–503 (2000)
Fitzi, M., Maurer, U.M.: Efficient byzantine agreement secure against general adversaries. In: International Symposium on Distributed Computing, pp. 134–148 (1998)
Altmann, B., Fitzi, M., Maurer, U.M.: Byzantine agreement secure against general adversaries in the dual failure model. In: International Symposium on Distributed Computing, pp. 123–137 (1999)
Garay, J.A.: Reaching (and Maintaining) Agreement in the Presence of Mobile Faults. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 253–264. Springer, Heidelberg (1994)
Rabin, M.O.: Randomized byzantine generals. In: FOCS, pp. 403–409 (1983)
Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM Journal on Computing 12(4), 656–666 (1983)
Borcherding, M.: On the number of authenticated rounds in byzantine agreement. In: Helary, J.-M., Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972, pp. 230–241. Springer, Heidelberg (1995)
Borcherding, M.: Partially authenticated algorithms for byzantine agreement. In: ISCA 1996, pp. 8–11 (1996)
Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Computing 2(2), 80–94 (1987)
Borcherding, M.: Levels of authentication in distributed agreement. In: Babaoğlu, Ö., Marzullo, K. (eds.) WDAG 1996. LNCS, vol. 1151, pp. 40–55. Springer, Heidelberg (1996)
Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agreement. J. Comput. Syst. Sci. 75(2), 91–112 (2009)
Gong, L., Lincoln, P., Rushby, J.: Byzantine agreement with authentication: Observations and applications in tolerating hybrid and link faults (1995)
Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: FOCS, pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001), http://eprint.iacr.org/2000/067
Lindell, Y., Lysysanskaya, A., Rabin, T.: On the Composition of Authenticated Byzantine Agreement. In: STOC, pp. 514–523. ACM Press, New York (2002)
Gupta, A., Hans, S., Srinathan, K., Rangan, C.P.: On composability of reliable unicast and broadcast. Technical report, International Institute of Information Technology, Hyderabad Complete version http://researchweb.iiit.ac.in/~anujgupta/Work.htm
Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus problems. In: PODC, pp. 59–70. ACM, New York (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gupta, A., Hans, S., Srinathan, K., Rangan, C.P. (2010). On Composability of Reliable Unicast and Broadcast. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds) Distributed Computing and Networking. ICDCN 2010. Lecture Notes in Computer Science, vol 5935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11322-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-11322-2_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11321-5
Online ISBN: 978-3-642-11322-2
eBook Packages: Computer ScienceComputer Science (R0)