Skip to main content

Supporting Malleability in Parallel Architectures with Dynamic CPUSETsMapping and Dynamic MPI

  • Conference paper
Distributed Computing and Networking (ICDCN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5935))

Included in the following conference series:

  • 870 Accesses

Abstract

Current parallel architectures take advantage of new hardware evolution, like the use of multicore machines in clusters and grids. The availability of such resources may also be dynamic. Therefore, some kind of adaptation is required by the applications and the resource manager to perform a good resource utilization. Malleable applications can provide a certain flexibility, adapting themselves on-the-fly, according to variations in the amount of available resources. However, to enable the execution of this kind of applications, some support from the resource manager is required, thus introducing important complexities like special allocation and scheduling policies. Under this context, we investigate some techniques to provide malleable behavior on MPI applications and the impact of this support upon a resource manager. Our study deals with two approaches to obtain malleability: dynamic CPUSETsmapping and dynamic MPI, using the OAR resource manager. The validation experiments were conducted upon Grid5000 platform. The testbed associates the charge of real workload traces and the execution of MPI benchmarks. Our results show that a dynamic approach using malleable jobs can lead to almost 25% of improvement in the resources utilization, when compared to a non-dynamic approach. Furthermore, the complexity of the malleability support, for the resource manager, seems to be overlapped by the improvement reached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Feitelson, D.G., Rudolph, L.: Toward convergence in job schedulers for parallel supercomputers. In: Job Scheduling Strategies for Parallel Processing, pp. 1–26. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Capit, N., Costa, G.D., Georgiou, Y., Huard, G., Martin, C., Mounié, G., Neyron, P., Richard, O.: A batch scheduler with high level components. In: 5th Int. Symposium on Cluster Computing and the Grid, Cardiff, UK, pp. 776–783. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  3. Lepère, R., Trystram, D., Woeginger, G.J.: Approximation algorithms for scheduling malleable tasks under precedence constraints. International Journal of Foundations of Computer Science 13(4), 613–627 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kalé, L.V., Kumar, S., DeSouza, J.: A malleable-job system for timeshared parallel machines. In: 2nd Int. Symposium on Cluster Computing and the Grid, Washington, USA, pp. 230–238. IEEE, Los Alamitos (2002)

    Google Scholar 

  5. Hungershöfer, J.: On the combined scheduling of malleable and rigid jobs. In: 16th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp. 206–213 (2004)

    Google Scholar 

  6. Utrera, G., Corbalán, J., Labarta, J.: Implementing malleability on MPI jobs. In: 13th Int. Conference on Parallel Architectures and Compilation Techniques, pp. 215–224. IEEE, Los Alamitos (2004)

    Chapter  Google Scholar 

  7. Hungershöfer, J., Achim Streit, J.M.W.: Efficient resource management for malleable applications. Technical Report TR-003-01, Paderborn Center for Parallel Computing (2001)

    Google Scholar 

  8. El Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Malleable iterative mpi applications. Concurrency and Computation: Practice and Experience 21(3), 393–413 (2009)

    Article  Google Scholar 

  9. Maghraoui, K.E., Desell, T.J., Szymanski, B.K., Varela, C.A.: Dynamic malleability in iterative MPI applications. In: 7th Int. Symposium on Cluster Computing and the Grid, pp. 591–598. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  10. Desell, T., Maghraoui, K.E., Varela, C.A.: Malleable applications for scalable high performance computing. Cluster Computing 10(3), 323–337 (2007)

    Article  Google Scholar 

  11. Buisson, J., Sonmez, O., Mohamed, H., Epema, D.: Scheduling malleable applications in multicluster systems. In: Int. Conference on Cluster Computing, pp. 372–381. IEEE, Los Alamitos (2007)

    Google Scholar 

  12. Bolze, R., Cappello, F., Caron, E., Dayd, M., Desprez, F., Jeannot, E., Jgou, Y., Lantri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, B., Richard, O., Talbi, l.G., Ira, T.: Grid 5000: a large scale and highly reconfigurable experimental grid testbed. Int. Journal of High Performance Computing Applications 20(4), 481–494 (2006)

    Article  Google Scholar 

  13. Georgiou, Y., Richard, O., Capit, N.: Evaluations of the lightweight grid cigri upon the grid 5000 platform. In: Third IEEE International Conference on e-Science and Grid Computing, Washington, DC, USA, pp. 279–286. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

  14. Litzkow, M., Livny, M., Mutka, M.: Condor - a hunter of idle workstations. In: Proceedings of the 8th International Conference of Distributed Computing Systems (1988)

    Google Scholar 

  15. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2 Advanced Features of the Message-Passing Interface. The MIT Press, Cambridge (1999)

    Google Scholar 

  16. Cera, M.C., Pezzi, G.P., Mathias, E.N., Maillard, N., Navaux, P.O.A.: Improving the dynamic creation of processes in MPI-2. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192, pp. 247–255. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Bailey, D., Harris, T., Saphir, W., Wijngaart, R.V.D., Woo, A., Yarrow, M.: The nas parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research Center (1995)

    Google Scholar 

  18. Li, H., Groep, D.L., Wolters, L.: Workload characteristics of a multi-cluster supercomputer. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 176–193. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cera, M.C., Georgiou, Y., Richard, O., Maillard, N., Navaux, P.O.A. (2010). Supporting Malleability in Parallel Architectures with Dynamic CPUSETsMapping and Dynamic MPI. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds) Distributed Computing and Networking. ICDCN 2010. Lecture Notes in Computer Science, vol 5935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11322-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11322-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11321-5

  • Online ISBN: 978-3-642-11322-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics