Abstract
Conventional wireless networks employ a contention based channel access mechanism, which not only imposes high latency but also reduces goodput of the network. Lack of interference estimation algorithms over the entire network results in unpredictable collision, packet loss and retransmissions. Advances in multicarrier modulation techniques enable us to group subcarriers into orthogonal subchannels and treat them separately as information carriers. While this provides an increased number of non-interfering channels, intelligent utilization of the given spectrum is also required. In this paper, a solution for decreasing latency in mesh networks has been proposed by aptly incorporating a virtual cut-through switching technique to route packets in the network. To alleviate the impact of interference on packet reception, we also propose a fast pair-wise interference detection scheme, which is used for channel allocation. The cumulative performance of the proposed protocol shows improvement over existing Wi-Fi based mesh networks that provide a motivating platform for future protocol developments using this technique.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ramanathan, R., Tchakountio, F.: Channel access over path segments for ultra low latency manets. In: IEEE MILCOM 2007 (October 2007)
McTasney, R., Grunwald, D., Sicker, D.: Low-Latency Multichannel Wireless Mesh Networks. In: Proceedings of the 16th International Conference on Computer Communications and Networks, ICCCN 2007, pp. 1082–1087. IEEE, New York (2007)
McTasney, R., Grunwald, D., Sicker, D.: Multichannel Wormhole Switching vs. CSMA/CA for Wireless Mesh Networking. In: Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC 2008. IEEE Communications Society, New York (2008)
Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor interconnection networks. IEEE Trans. Comput. 36(5), 547–553 (1987)
Ramanathan, R.: A unified framework and algorithm for channel assignment in wireless networks. Wireless Networks 5(2), 81–94 (1999)
Zhang, X., Liu, Q., Shi, D., Liu, Y., Yu, X.: An average link interference-aware routing protocol for mobile ad hoc networks. In: ICWMC 2007: Proceedings of the Third International Conference on Wireless and Mobile Communications, Washington, DC, USA, p. 10. IEEE Computer Society, Los Alamitos (2007)
ElBatt, T., Andersen, T.: Cross-layer interference-aware routing for wireless multi-hop networks. In: IWCMC 2006: Proceedings of the 2006 international conference on Wireless communications and mobile computing, pp. 153–158. ACM, New York (2006)
Sen, A., Ganguly, S.M.S., Bhatnagar, S.: An interference-aware channel assignment scheme for wireless mesh networks. In: Communications 2007 (2007)
Halperin, D., Anderson, T., Wetherall, D.: Taking the sting out of carrier sense: interference cancellation for wireless lans. In: MobiCom 2008: Proceedings of the 14th ACM international conference on Mobile computing and networking, pp. 339–350. ACM, New York (2008)
Radunovic, B., Gunawardena, D., Proutiere, A., Singh, N., Balan, V., Key, P.: Efficiency and fairness in distributed wireless networks through self-interference cancellation and scheduling. Technical report, Microsoft Research (March 2009)
802.11a 1999, I.S.: Part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications high-speed physical layer in the 5 ghz band
Fifield, J., Kasemir, P., Grunwald, D., Sicker, D.: Experiences with a platform for frequency-agile techniques. In: DYSPAN 2007 (2007)
Dutta, A., Fifield, J., Schelle, G., Grunwald, D., Sicker, D.: An intelligent physical layer for cognitive radio networks. In: WICON 2008: Proceedings of the 4th international conference on Wireless internet (2008)
802.11-1999, I.S.: Part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications
Technologies, S.N.: QualNet network simulator, version 4.0
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Saha, D., Dutta, A., Grunwald, D., Sicker, D. (2010). Channel Assignment in Virtual Cut-through Switching Based Wireless Mesh Networks. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds) Distributed Computing and Networking. ICDCN 2010. Lecture Notes in Computer Science, vol 5935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11322-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-11322-2_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11321-5
Online ISBN: 978-3-642-11322-2
eBook Packages: Computer ScienceComputer Science (R0)