Skip to main content

Performance Evaluation of a Wormhole-Routed Algorithm for Irregular Mesh NoC Interconnect

  • Conference paper
Distributed Computing and Networking (ICDCN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5935))

Included in the following conference series:

Abstract

Irregular routing algorithms are based on fault-tolerant algorithms. They are capable of use with some modifications for irregular networks, and conventionally use several virtual channels (VCs) to pass faults and irregular nodes. A well-known wormhole-switched routing algorithm named f-cube3 employs three virtual channels to overtake faulty blocks. We have estimated an irregular routing algorithm derived from f-cube3 as a solution to increase the utilization of links with a higher saturation point which uses fewer numbers of VCs in comparison to f-cube3 by reducing desired virtual channels to two supporting irregular network. Moreover, simulation of both algorithms, for the same setting has been presented. Over and above, as the simulation results show, our algorithm has a higher performance in comparison with f-cube3 even with one less VC. As well, the results show that our algorithm has less blocked messages in the network with higher switched and routed messages in Network-on-Chip (NoC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, M., Welzl, M., Zwicknagl, M., Hellebrand, S.: Considerations for fault-tolerant network on chips. In: The 17th International Conference on Microelectronics, December 13-15, pp. 178–182 (2005)

    Google Scholar 

  2. Benini, L., De Micheli, G.: Networks on chips: A new SoC paradigm. IEEE Computer, 70–78 (January 2002)

    Google Scholar 

  3. Boppana, R.V., Chalasani, S.: Fault-tolerant wormhole routing algorithms for mesh networks. IEEE Trans. Computers 44(7), 848–864 (1995)

    Article  MATH  Google Scholar 

  4. National Dally, W.J.: Virtual channel flow control. IEEE TPDS 3(2), 194–205 (1992)

    Google Scholar 

  5. Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor interconnection networks. IEEE Trans. Computers 36(5), 547–553 (1987)

    Article  MATH  Google Scholar 

  6. Dally, W.J., Towles, B.: Principles and practices of interconnection networks. Morgan Kaufman Publishers, San Francisco (2004)

    Google Scholar 

  7. Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnection networks. In: Proceedings of Design Automation Conference, Las Vegas, NV, USA, June 18-21, pp. 684–689 (2001)

    Google Scholar 

  8. Duato, J., Yalamanchili, S., Ni, L.: Interconnection networks: An engineering approach. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  9. Guerrier, P., Greiner, A.: A generic architecture for on-chip packet-switched interconnections. In: Proceedings of Design Automation and Test in Europe Conference and Exhibition, Paris, France, March 27-30, pp. 250–256 (2000)

    Google Scholar 

  10. Hemani, A., Jantsch, A., Kumar, S., Postula, A., Oberg, J., Millberg, M., Lindqvist, D.: Network on chip: an architecture for billion transistor era. In: IEEE NorChip Conf., November 2000, pp. 120–124 (2000)

    Google Scholar 

  11. Kumar, S., Jantsch, A., Millberg, M., Oberg, J., Soininen, J., Forsell, M., Tiensyrj, K., Hemani, A.: A network on chip architecture and design methodology. In: Symposium on VLSI, April 2002, pp. 117–124 (2002)

    Google Scholar 

  12. Matsutani, H., Koibuchi, M., Yamada, Y., Jouraku, A., Amano, H.: Non-minimal routing strategy for application-specific networks-on-chips. In: ICPP 2005, International Conference Workshops on Parallel Processing, June 14-17, 2005, pp. 273–280 (2005)

    Google Scholar 

  13. Rezazadeh, A., Fathy, M., Hassanzadeh, A.: If-cube3: an improved fault-tolerant routing algorithm to achieve less latency in NoCs. In: IACC 2009, IEEE International Advanced Computing Conference, March 6-7, 2009, pp. 278–283 (2009)

    Google Scholar 

  14. Rezazadeh, A., Fathy, M.: Throughput Considerations of Fault-Tolerant Routing in Network-on-Chip. In: Second International Conference on Contemporary Computing (IC3 2009), Communications in Computer and Information Science (CCIS), August 17-19, vol. 40, pp. 81–92. Springer, Heidelberg (2009)

    Google Scholar 

  15. Srinivasan, K., Chatha, K.S.: A technique for low energy mapping and routing in network-on-chip architectures. In: ISLPED’05, pp. 387-392, San Diego, California, USA, August 8-10 (2005)

    Google Scholar 

  16. Sui, P.H., Wang, S.D.: An improved algorithm for fault-tolerant wormhole routing in meshes. IEEE Trans. on Computers 46(9), 1040–1042 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rezazadeh, A., Momeni, L., Fathy, M. (2010). Performance Evaluation of a Wormhole-Routed Algorithm for Irregular Mesh NoC Interconnect. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds) Distributed Computing and Networking. ICDCN 2010. Lecture Notes in Computer Science, vol 5935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11322-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11322-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11321-5

  • Online ISBN: 978-3-642-11322-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics