Skip to main content

Using Homotopy-WHEP Technique in Solving Nonlinear Diffusion Equation with Stochastic No Homogeneity

  • Chapter
Transactions on Computational Science VII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 5890))

Abstract

In this paper, the diffusion equation under square and cubic nonlinearities and stochastic no homogeneity is solved using the Homotopy-WHEP technique. The use of the homotopy perturbation method in WHEP technique is introduced to deal with non-perturbative systems. The new technique is then used to solve the nonlinear diffusion equation with making comparisons with Homotopy perturbation method (HPM). The method of analysis is illustrated through case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Feriet, K.: Random solutions of partial differential equations. In: Proc. 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1955, vol. III, pp. 199–208 (1956)

    Google Scholar 

  2. Bhrucha-Reid, A.: survey on the theory of random functions. The institute of mathematical sciences. Matscience Report 31. India (1965)

    Google Scholar 

  3. Lo Dato, V.: Stochastic processes in heat and mass transport. In: Bharucha-Reid (ed.) C: Probabilistic methods in applied mathematics, vol. 3(A), pp. 183–212 (1973)

    Google Scholar 

  4. Becus, A.G.: Random generalized solutions to the heat equations. J. Math. Anal. and Appl. 60, 93–102 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Marcus, R.: Parabolic Ito equation with monotone nonlinearities. J. Functional Analysis 29, 257–286 (1978)

    Article  Google Scholar 

  6. Manthey, R.: Weak convergence of solutions of the heat equation with Gaussian noise. Math. Nachr. 123, 157–168 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Manthey, R.: Existence and uniqueness of a solution of a reaction-diffusion with polynomial nonlinearity and with noise disturbance. Math. Nachr. 125, 121–133 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Jetschke, G.: II. Most probable states of a nonlinear Brownian bridge. Forschungsergebnisse (Jena) N/86/20 (1986)

    Google Scholar 

  9. Jetschke, G.: III. Tunneling in a bistable infinite-dimensional potential. Forschungsergebnisse (Jena) N/86/40 (1986)

    Google Scholar 

  10. El-Tawil, M.: Nonhomogeneous boundary value problems. J. Math. Anal. and Appl. 200, 53–65 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Uemura, H.: Construction of the solution of 1-dim heat equation with white noise potential and its asymptotic behavior. Stoch. Anal. & Appl. 14, 487–506 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. El-Tawil, M.: The application of WHEP technique on partial differential equations. International Journal of Differential Equations and its Applications 7(3), 325–337 (2003)

    MATH  MathSciNet  Google Scholar 

  13. El-Tawil, M.: The Homotopy Wiener-Hermite expansion and perturbation technique (WHEP). In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science I. LNCS, vol. 4750, pp. 159–180. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Engrg. 178, 257–292 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. He, J.H.: A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int. J. of nonlinear mechanics 35, 37–43 (2000)

    Article  MATH  Google Scholar 

  16. He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Applied Math. and computations 135, 73–79 (2003)

    Article  MATH  Google Scholar 

  17. He, J.H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Applied Math. and computations 151, 287–292 (2004)

    Article  MATH  Google Scholar 

  18. Liao, S.J.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169, 1186–1194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cveticanin, L.: The homotopy-perturbation method applied for solving complex-valued differential equations with strong cubic nonlinearity. Journal of Sound and Vibration 285(4-5), 1171–1179 (2005)

    Article  MathSciNet  Google Scholar 

  20. He, J.H.: Some asymptotic methods for strongly nonlinear equations. Intern J. of modern physics B 20(10), 1141–1199 (2006)

    Article  MATH  Google Scholar 

  21. Farlow, S.J.: Partial differential equations for scientists and engineers. Wiley, N.Y (1982)

    MATH  Google Scholar 

  22. Saffman, P.: Application of Wiener-Hermite expansion to the diffusion of a passive scalar in a homogeneous turbulent flow. Physics of fluids 12(9), 1786–1798 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  23. Crow, S., Canavan, G.: Relationship between a Wiener-Hermite expansion and an energy cascade. J. of fluid mechanics 41(2), 387–403 (1970)

    Article  MATH  Google Scholar 

  24. Wang, J., Shu, S.: Wiener-Hermite expansion and the inertial subrange of a homogeneous isotropic turbulence. Physics of fluids 17(6) (June 1974)

    Google Scholar 

  25. Hogge, H., Meecham, W.: Wiener-Hermite expansion applied to decaying isotropic turbulence using a renormalized time-dependent base. J. of fluid of mechanics 85(2), 325–347 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kambe, R., Doi, M., Imamura, T.: Turbulent flows near flat plates. J. of the physical society of Japan 49(2), 763–778 (1980)

    Article  MathSciNet  Google Scholar 

  27. Jahedi, A., Ahmadi, G.: Application of Wiener-Hermite expansion to non-stationary random vibration of a Duffing oscillator. J. of applied mechanics, Transactions ASME 50(2), 436–442 (1983)

    MATH  MathSciNet  Google Scholar 

  28. Eftimiu, C.: First-order Wiener-Hermite expansion in the electromagnetic scattering by conducting rough surfaces. Radio science 23(5), 769–779 (1988)

    Article  Google Scholar 

  29. Gawad, E., El-Tawil, M.: General stochastic oscillatory systems. Applied Mathematical Modelling 17(6), 329–335 (1993)

    Article  MATH  Google Scholar 

  30. El-Tawil, M., Mahmoud, G.: The solvability of parametrically forced oscillators using WHEP technique. Mechanics and mechanical engineering 3(2), 181–188 (1999)

    Google Scholar 

  31. Xu, Y., Xu, W., Mahmoud, G.: On a complex Duffing system with random excitation. Chaos Solitons & Fractals 35(1), 126–132 (2008)

    Article  MATH  Google Scholar 

  32. El-Tawil, M.A., El-Jihany, A.: On The Solution of stochastic oscillatory quadratic nonlinear equations using different techniques, a comparison study. Topological methods in nonlinear sciences (TMNA) 31(2), 315–330 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

El-Tawil, M.A., Al-Mulla, N.A. (2010). Using Homotopy-WHEP Technique in Solving Nonlinear Diffusion Equation with Stochastic No Homogeneity. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VII. Lecture Notes in Computer Science, vol 5890. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11389-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11389-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11388-8

  • Online ISBN: 978-3-642-11389-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics