Skip to main content

On Module-Composed Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5911))

Included in the following conference series:

  • 1023 Accesses

Abstract

In this paper we introduce module-composed graphs, i.e. graphs which can be defined by a sequence of one-vertex insertions v 1,...,v n , such that the neighbourhood of vertex v i , 2 ≤ i ≤ n, forms a module of the graph defined by vertices v 1,...,v i − 1.

We show that module-composed graphs are HHDS-free and thus homogeneously orderable, weakly chordal, and perfect. Every bipartite distance hereditary graph and every trivially perfect graph is module- composed. We give an \(\mathcal{O}(|V|\cdot (|V|+|E|))\) time algorithm to decide whether a given graph G = (V,E) is module-composed and construct a corresponding module-sequence.

For the case of bipartite graphs, we show that the set of module-composed graphs is equivalent to the well known class of distance hereditary graphs, which implies linear time algorithms for their recognition and construction of a corresponding module-sequence using BFS and Lex-BFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. Journal of Combinatorial Theory, Series B 41, 182–208 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brandstädt, A., Dragan, F.F., Nicolai, F.: Homogeneously orderable graphs. Theoretical Computer Science 172, 209–232 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Corneil, D.G.: Lexicographic breadth first search - a survey. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 1–19. Springer, Heidelberg (2004)

    Google Scholar 

  6. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33(2), 125–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Applied Mathematics 101, 77–114 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cournier, A., Habib, M.: A new linear time algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  9. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Farber, M.: Characterizations of strongly chordal graphs. Discrete Mathematics 43, 173–189 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing 1(2), 180–187 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. International Journal of Foundations of Computer Science 11(3), 423–443 (2000)

    Article  MathSciNet  Google Scholar 

  13. Hammer, P.L., Maffray, F.: Completely separable graphs. Discrete Applied Mathematics 27, 85–99 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jamison, B., Olariu, S.: On the semi-perfect elimination. Advances in applied mathematics 9, 364–376 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lanlignel, J.-M., Raynaud, O., Thierry, É.: Pruning graphs with digital search trees. Application to distance hereditary graphs. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 529–541. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Mathematics 201(1-3), 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics 19, 257–365 (1984)

    Google Scholar 

  18. Müller, H., Nicolai, F.: Polynomial time algorithms for hamiltonian problems on bipartite distance-hereditary graphs. Information Processing Letters 46(5), 225–230 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rao, M.: Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics 308(24), 6157–6165 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yeh, H.-G., Chang, G.J.: The path-partition problem in bipartite distance-hereditary graphs. Taiwanese Journal of Mathematics 2(3), 353–360 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurski, F., Wanke, E. (2010). On Module-Composed Graphs. In: Paul, C., Habib, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2009. Lecture Notes in Computer Science, vol 5911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11409-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11409-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11408-3

  • Online ISBN: 978-3-642-11409-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics