Abstract
In this paper we claim that the classification performance of bagging classifier can be improved by drawing to bootstrap samples objects being more consistent with their assignment to decision classes. We propose a variable consistency generalization of the bagging scheme where such sampling is controlled by two types of measures of consistency: rough membership and monotonic ε measure. The usefulness of this proposal is experimentally confirmed with various rule and tree base classifiers. The results of experiments show that variable consistency bagging improves classification accuracy on inconsistent data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aha, D.W., Kibler, E., Albert, M.K.: Instance-based learning algorithms. Machine Learning Journal 6, 37–66 (1991)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepositoru.html
Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: On Variable Consistency Dominance-based Rough Set Approaches. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 191–202. Springer, Heidelberg (2006)
Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: Monotonic Variable Consistency Rough Set Approaches. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 126–133. Springer, Heidelberg (2007)
Breiman, L.: Bagging predictors. Machine Learning Journal 24(2), 123–140 (1996)
Breiman, L.: Pasting small votes for classification in large databases and on-line. Machine Learning Journal 36, 85–103 (1999)
Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
Cohen, W.W.: Fast effective rule induction. In: Proc. of the 12th Int. Conference on Machine Learning, pp. 115–123 (1995)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
Dietrich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)
Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An algorithm for induction of decision rules consistent with dominance principle. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 304–313. Springer, Heidelberg (2001)
Grzymala-Busse, J.W.: Managing uncertainty in machine learning from examples. In: Proc. 3rd Int. Symp. in Intelligent Systems, pp. 70–84 (1994)
Grzymala-Busse, J.W., Stefanowski, J.: Three approaches to numerical attribute discretization for rule induction. International Journal of Intelligent Systems 16(1), 29–38 (2001)
Kuncheva, L.: Combining Pattern Classifiers. In: Methods and Algorithms, Wiley, Chichester (2004)
Latinne, P., Debeir, O., Decaestecker, Ch.: Different ways of weakening decision trees and their impact on classification accuracy of decision tree combination. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, p. 200. Springer, Heidelberg (2000)
Nemenyi, P.B.: Distribution free multiple comparison. Ph.D. Thesis, Princenton Univeristy (1963)
Hoa, N.S., Nguyen, T.T., Son, N.H.: Rough sets approach to sunspot classification problem. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 263–272. Springer, Heidelberg (2005)
Pawlak, Z.: Rough sets. International Journal of Information & Computer Sciences 11, 341–356 (1982)
Quinlan, J.R.: Bagging, boosting and C4.5. In: Proc. of the 13th National Conference on Artificial Intelligence, pp. 725–730 (1996)
Słowiński, R., Greco, S., Matarazzo, B.: Rough set based decision support. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 475–527. Springer, Heidelberg (2005)
Slezak, D.: Approximate entropy reducts. Fundamenta Informaticae 53(3/4), 365–387 (2002)
Stefanowski, J.: The rough set based rule induction technique for classification problems. In: Proc. of 6th European Conference on Intelligent Techniques and Soft Computing. EUFIT 1998, pp. 109–113 (1998)
Stefanowski, J.: Multiple and hybrid classifiers. In: Polkowski, L. (ed.) Formal Methods and Intelligent Techniques in Control, Decision Making, Multimedia and Robotics, Post-Proceedings of 2nd Int. Conference, Warszawa, pp. 174–188 (2001)
Stefanowski, J.: The bagging and n2-classifiers based on rules induced by MODLEM. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 488–497. Springer, Heidelberg (2004)
Stefanowski, J., Kaczmarek, M.: Integrating attribute selection to improve accuracy of bagging classifiers. In: Proc. of the AI-METH 2004 Conference - Recent Developments in Artificial Intelligence Methods, Gliwice, pp. 263–268 (2004)
Stefanowski, J., Nowaczyk, S.: An experimental study of using rule induction in combiner multiple classifier. International Journal of Computational Intelligence Research 3(4), 335–342 (2007)
Stefanowski, J., Wilk, S.: Improving Rule Based Classifiers Induced by MODLEM by Selective Pre-processing of Imbalanced Data. In: Proc. of the RSKD Workshop at ECML/PKDD, Warsaw, pp. 54–65 (2007)
Suraj, Z., Gayar Neamat, E., Delimata, P.: A Rough Set Approach to Multiple Classifier Systems. Fundamenta Informaticae 72(1-3), 393–406 (2006)
Wilson, D.R., Martinez, T.: Reduction techniques for instance-based learning algorithms. Machine Learning Journal 38, 257–286 (2000)
Valentini, G., Masuli, F.: Ensembles of Learning Machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–19. Springer, Heidelberg (2002)
Wong, S.K.M., Ziarko, W.: Comparison of the probabilistic approximate classification and the fuzzy set model. Fuzzy Sets and Systems 21, 357–362 (1987)
Ziarko, W.: Variable precision rough sets model. Journal of Computer and Systems Sciences 46(1), 39–59 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Błaszczyński, J., Słowiński, R., Stefanowski, J. (2010). Variable Consistency Bagging Ensembles. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets XI. Lecture Notes in Computer Science, vol 5946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11479-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-11479-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11478-6
Online ISBN: 978-3-642-11479-3
eBook Packages: Computer ScienceComputer Science (R0)