Abstract
The internet service NetTRS (Network TRS) that enable to realize induction, evaluation, and postprocessing of decision rules is presented in the paper. The TRS (Tolerance Rough Sets) library is the main part of the service. The TRS library makes possible to induct, generalize and filtrate decision rules. Moreover, TRS enables to evaluate rules and conduct the classification process. The NetTRS service is a package of the library in user interface and makes it accessible in the Internet. NetTRS put principal emphasis on induction and postprocessing of decision rules, the paper describes methods and algorithms that are available in the service.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agotnes, T.: Filtering large propositional rule sets while retaining classifier performance. MSc Thesis. Norwegian University of Science and Technology, Trondheim, Norway (1999)
Agotnes, T., Komorowski, J., Loken, T.: Taming Large Rule Models in Rough Set Approaches. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 193–203. Springer, Heidelberg (1999)
An, A., Cercone, N.: Rule quality measures for rule induction systems – description and evaluation. Computational Intelligence 17, 409–424 (2001)
Bazan, J., Skowron, A., Wang, H., Wojna, A.: Multimodal classification: case studies. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 224–239. Springer, Heidelberg (2006)
Bazan, J.: A comprasion of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methododology and Applications, pp. 321–365. Physica, Heidelberg (1998)
Bazan, J., Szczuka, M., Wróblewski, J.: A new version of rough set exploration system. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)
Breiman, L., Friedman, J., Olshen, R., Stone, R.: Classificzation and Regression Trees. Wadsworth, Pacific Grove (1984)
Brazdil, P.B., Togo, L.: Knowledge acquisition via knowledge integration. Current Trends in Knowledge Acquisition. IOS Press, Amsterdam (1990)
Bruha, I.: Quality of Decision Rules: Definitions and Classification Schemes for Multiple Rules. In: Nakhaeizadeh, G., Taylor, C.C. (eds.) Machine Learning and Statistics, The Interface, pp. 107–131. Wiley, NY (1997)
Brzeziñska, I., Greco, S., Sowiñski, R.: Mining Pareto-optimal rules with respect to support and confirmation or support and anti-support. Engineering Applications of Artificial Intelligence 20, 587–600 (2007)
Duch, W., Adamczak, K., Grbczewski, K.: Methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transaction on Neural Networks 12, 277–306 (2001)
Furnkranz, J., Widmer, G.: Incremental Reduced Error Pruning. In: Proceedings of the Eleventh International Conference of Machine Learning, New Brunswick, NJ, USA, pp. 70–77 (1994)
Greco, S., Matarazzo, B., Sowiñski, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria Decision Making, pp. 1–59. Kluwer Academic Publishers, Dordrecht (1999)
Greco, S., Materazzo, B., Sowiñski, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)
Greco, S., Pawlak, Z., Sowiñski, R.: Can Bayesian confirmation measures be use-ful for rough set decision rules? Engineering Applications of Artificial Intelligence 17, 345–361 (2004)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company Inc., Boston (1989)
Góra, G., Wojna, A.: RIONA: A new classification system combining rule induction and instance-based learning. Fundamenta Informaticae 51(4), 369–390 (2002)
Grzymaa-Busse, J.W.: LERS - a system for learning from examples based on rough sets. In: Sowiñski, R. (ed.) Intelligent Decision Support. Handbook of applications and advances of the rough set theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)
Grzymaa-Busse, J.W., Ziarko, W.: Data mining based on rough sets. In: Wang, J. (ed.) Data Mining Opportunities and Challenges, pp. 142–173. IGI Publishing, Hershey (2003)
Guillet, F., Hamilton, H.J. (eds.): Quality Measures in Data Mining. Computational Intelligence Series. Springer, Heidelberg (2007)
Kanonenko, I., Bratko, I.: Information-based evaluation criterion for classifier‘s performance. Machine Learning 6, 67–80 (1991)
Kaufman, K.A., Michalski, R.S.: Learning in Inconsistent World, Rule Selection in STAR/AQ18. Machine Learning and Inference Laboratory Report P99-2 (February 1999)
Kubat, M., Bratko, I., Michalski, R.S.: Machine Learning and Data Mining: Methods and Applications. Wiley, NY (1998)
Latkowski, R., Mikoajczyk, M.: Data Decomposition and Decision Rule Joining for Classification of Data with Missing Values. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 299–320. Springer, Heidelberg (2004)
Michalski, R.S., Carbonell, J.G., Mitchel, T.M.: Machine Learning, vol. I. Morgan-Kaufman, Los Altos (1983)
Mikoajczyk, M.: Reducing number of decision rules by joining. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 425–432. Springer, Heidelberg (2002)
Nguyen, H.S., Nguyen, S.H.: Some Efficient Algorithms for Rough Set Methods. In: Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada, Spain, pp. 1451–1456 (1996)
Nguyen, H.S., Nguyen, T.T., Skowron, A., Synak, P.: Knowledge discovery by rough set methods. In: Callaos, N.C. (ed.) Proc. of the International Conference on Information Systems Analysis and Synthesis, ISAS 1996, Orlando, USA, July 22-26, pp. 26–33 (1996)
Nguyen, H.S., Skowron, A.: Searching for relational patterns in data. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 265–276. Springer, Heidelberg (1997)
Nguyen, H.S., Skowron, A., Synak, P.: Discovery of data patterns with applications to decomposition and classfification problems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, pp. 55–97. Physica, Heidelberg (1998)
Nguyen, H.S.: Data regularity analysis and applications in data mining. Doctoral Thesis, Warsaw University. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough set methods and applications: New developments in knowledge discovery in information systems, pp. 289–378. Physica-Verlag/Springer, Heidelberg (2000), http://logic.mimuw.edu.pl/
Ohrn, A., Komorowski, J., Skowron, A., Synak, P.: The design and implementation of a knowledge discovery toolkit based on rough sets: The ROSETTA system. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 376–399. Physica, Heidelberg (1998)
Pawlak, Z.: Rough Sets. Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)
Pednault, E.: Minimal-Length Encoding and Inductive Inference. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 71–92. MIT Press, Cambridge (1991)
Pindur, R., Susmaga, R., Stefanowski, J.: Hyperplane aggregation of dominance decision rules. Fundamenta Informaticae 61, 117–137 (2004)
Podraza, R., Walkiewicz, M., Dominik, A.: Credibility coefficients in ARES Rough Sets Exploration Systems. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 29–38. Springer, Heidelberg (2005)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan-Kaufman, San Mateo (1993)
Prêdki, B., Sowiñski, R., Stefanowski, J., Susmaga, R.: ROSE – Software implementation of the rough set theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, p. 605. Springer, Heidelberg (1998)
Sikora, M., Proksa, P.: Algorithms for generation and filtration of approximate decision rules, using rule-related quality measures. In: Proceedings of International Workshop on Rough Set Theory and Granular Computing (RSTGC 2001), Matsue, Shimane, Japan, pp. 93–98 (2001)
Sikora, M.: Rules evaluation and generalization for decision classes descriptions improvement. Doctoral Thesis, Silesian University of Technology, Gliwice, Poland (2001) (in Polish)
Sikora, M., Proksa, P.: Induction of decision and association rules for knowledge discovery in industrial databases. In: International Conference on Data Mining, Alternative Techniques for Data Mining Workshop, Brighton, UK (2004)
Sikora, M.: Approximate decision rules induction algorithm using rough sets and rule-related quality measures. Theoretical and Applied Informatics 4, 3–16 (2004)
Sikora, M.: An algorithm for generalization of decision rules by joining. Foundation on Computing and Decision Sciences 30, 227–239 (2005)
Sikora, M.: System for geophysical station work supporting - exploitation and development. In: Proceedings of the 13th International Conference on Natural Hazards in Mining, Central Mining Institute, Katowice, Poland, pp. 311–319 (2006) (in Polish)
Sikora, M.: Rule quality measures in creation and reduction of data role models. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 716–725. Springer, Heidelberg (2006)
Sikora, M.: Adaptative application of quality measures in rules induction algorithms. In: Kozielski, S. (ed.) Databases, new technologies, vol. I. Transport and Communication Publishers (Wydawnictwa Komunikacji i Łączności), Warsaw (2007) (in Polish)
Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Informa-tion systems. In: Sowiñski, R. (ed.) Intelligent Decision Support. Handbook of applications and advances of the rough set theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 224–239. Springer, Heidelberg (2006)
Skowron, A., Wang, H., Wojna, A., Bazan, J.: Multimodal Classification: Case Studies. Fundamenta Informaticae 27, 245–253 (1996)
Sowiñski, R., Greco, S., Matarazzo, B.: Mining decision-rule preference model from rough approximation of preference relation. In: Proceedings of the 26th IEEE Annual Int. Conf. on Computer Software and Applications, Oxford, UK, pp. 1129–1134 (2002)
Stefanowski, J.: Rough set based rule induction techniques for classification problems. In: Proceedings of the 6th European Congress of Intelligent Techniques and Soft Computing, Aachen, Germany, pp. 107–119 (1998)
Stefanowski, J.: Algorithms of rule induction for knowledge discovery. Poznañ University of Technology, Thesis series 361, Poznañ, Poland (2001) (in Polish)
Smyth, P., Gooodman, R.M.: Rule induction using information theory. In: Piatetsky-Shapiro, G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 159–176. MIT Press, Cambridge (1991)
Stepaniuk, J.: Knowledge Discovery by Application of Rough Set Models. Institute of Computer Sciences Polish Academy of Sciences, Reports 887, Warsaw, Poland (1999)
Stepaniuk, J., Krêtowski, M.: Decision System Based on Tolerance Rough Sets. In: Proceedings of the 4th International Workshop on Intelligent Information Systems, Augustów, Poland, pp. 62–73 (1995)
Ślęzak, D., Wróblewski, J.: Classification Algorithms Based on Linear Combination of Features. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 548–553. Springer, Heidelberg (1999)
Wang, H., Duentsch, I., Gediga, G., Skowron, A.: Hyperrelations in version space. International Journal of Approximate Reasoning 36(3), 223–241 (2004)
Wojna, A.: Analogy based reasoning in classifier construction. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 277–374. Springer, Heidelberg (2005)
Ziarko, W.: Variable precision rough sets model. Journal of Computer and System Sciences 46, 39–59 (1993)
Zhong, N., Skowron, A.: A rough set-based knowledge discovery process. International Journal of Applied Mathematics and Computer Sciences 11, 603–619 (2001)
Yao, Y.Y., Zhong, N.: An Analysis of Quantitative Measures Associated with Rules. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 479–488. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sikora, M. (2010). Decision Rule-Based Data Models Using TRS and NetTRS – Methods and Algorithms. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets XI. Lecture Notes in Computer Science, vol 5946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11479-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-11479-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11478-6
Online ISBN: 978-3-642-11479-3
eBook Packages: Computer ScienceComputer Science (R0)