Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5930))

  • 483 Accesses

Abstract

The complexity class PSPACE is one of the most robust concepts in contemporary computer science. Aside from the fact that space is invariant (for reasonable models at least) up to a constant factor, the class can be characterized in many alternative ways, involving parallel computation, logic problems like QBF, interactive computation models but also by means of games.

In the literature the connection between PSPACE and games is established as a consequence either of the PSPACE completeness of the QBF problem or as a consequence of the properties of the alternating computation model. Based on either of these starts one subsequently has investigated the PSPACE completeness of endgame analysis problems for various specific games.

The purpose of this note is to present a direct reduction of an arbitrary PSPACE problem into endgame analysis of a corresponding game. As a consequence we obtain an alternative proof of the 1970 Savitch theorem showing that PSPACE is closed under nondeterminism. Furthermore we reconsider the direct translation of endgame analysis of some game in QBF, in order to obtain a better understanding of the conditions on the game which enable this translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Moran, S.: Arthur-Merlin Games: a Randomized Proof System and a Hierarchy of Complexity Classes. J. Comput. Syst. Sci. 36, 254–276 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. van Benthem, J.F.A.K.: Logic Games are Complete for Game Logics. Studia Logica 75, 183–203 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. Assoc. Comput. Mach. 28, 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chlebus, B.S.: Domino-Tiling Games. J. Comput. Syst. Sci. 32, 374–392 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demaine, E.D.: Playing Games with Algorithms: Algorithmic Combinatorial Game Theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–32. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. http://erikdemaine.org/games/

  7. Flake, G.W., Baum, E.B.: Rush Hour is PSPACE-complete, or “Why you should generously tip parking lot attendants”? Theor. Computer Sci. 270, 895–911 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fraenkel, A.S., Lichtenstein, D.: Computing a perfect strategy for n x n chess requires time exponential in n. J. Combin. theory series A 31, 199–213 (1981)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability; a Guide to the Theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Gijlswijk, V.W., Kindervater, G.A.P., van Tubergen, G.J., Wiegerinck, J.J.O.O.: Computer Analysis of E. de Bono’s L-Game. Rep. Math, Inst. UvA 76-18 (1976)

    Google Scholar 

  11. John, R., Gilbert, J.R., Lengauer, T., Tarjan, R.E.: The Pebbling Problem is Complete in Polynomial Space. SIAM J. Comput. 9, 513–524 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM J. Comput. 18, 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Savitch, W.J.: Relations between Deterministic and Nondeterministic tape Complexities. J. Comput. Syst. Sci. 12, 177–192 (1970)

    Article  MATH  Google Scholar 

  14. Schäfer, T.J.: Complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16, 185–225 (1978)

    Article  MathSciNet  Google Scholar 

  15. Shamir, A.: IP = PSPACE. J. Assoc. Comput. Mach. 39, 878–880 (1992)

    Article  MathSciNet  Google Scholar 

  16. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. ACM STOC, vol. 5, pp. 1–9 (1973)

    Google Scholar 

  17. van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.) Handbook of theoretical computer science, vol. A, pp. 3–66. North Holland Publ. Cie, MIT Press (1990)

    Google Scholar 

  18. van Emde Boas, P.: The convenience of tiling. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory. Lect. Notes in Pure and Applied Math., vol. 187, pp. 331–363 (1977)

    Google Scholar 

  19. van Emde Boas, P.: Classroom material for the course Games and Complexity for the year 2007-2008, http://staff.science.uva.nl/~peter/teaching/gac08.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Emde Boas, P. (2010). Playing Savitch and Cooking Games. In: Dams, D., Hannemann, U., Steffen, M. (eds) Concurrency, Compositionality, and Correctness. Lecture Notes in Computer Science, vol 5930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11512-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11512-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11511-0

  • Online ISBN: 978-3-642-11512-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics