Abstract
The last few years have seen a wide adoption of the IEEE 802.15.4 MAC/PHY standard for low-power communication between wireless sensor nodes. Within this work we study some fundamental drawbacks of the 802.15.4 specifications for multihop network deployments, which adversely affect efficient node energy consumption. These issues are rectified by investigating a timezone-based scheduling, V-Route, that builds on 802.15.4 beaconless mode to enable both a synchronized sleep scheduling and a bidirectional communication between nodes in the sensor network and the PAN coordinator. The contributions of V-Route are threefold: (1) mitigate collisions, (2) enable packet routing and (3) provide energy saving in a multihop context, while maintaining the full compliancy with the 802.15.4 standard. We present a performance evaluation on energy consumption and latency with real experiments on Philips AquisGrain sensor nodes. Enhancing 802.15.4-based multi-hop networks with V-Route yields energy reduction ranging from 27.3% to 85.3%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
IEEE standard for information technology - information exchange between systems - local and metropolitan area networks specific requirements part 15.4: wireless medium access control (mac) and physical layer (phy) specifications for low-rate wireless personal area networks (lr-wpans), IEEE Std 802.15.4-2003, 1–670 (2003)
IEEE standard for information technology - information exchange between systems- local and metropolitan area networks- specific requirements part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications for low-rate wireless personal area networks (wpans), IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), 1–305 (2006)
Zigbee Alliance, Zigbee working group web page for rf-lite (2002)
Aoun, M., Schoofs, A., van der Stok, P.: Efficient time synchronization for wireless sensor networks in an industrial setting, pp. 419–420 (2008)
Benson, J., O’Donovan, T., Roedig, U., Sreenan, C.J.: Opportunistic aggregation over duty cycled communications in wireless sensor networks. In: In Proc. of ACM/IEEE Symposium on Information Processing in Sensor Networks (IPSN), April 2008, pp. 307–318 (2008)
Harthikote-Matha, M., Banka, T., Jayasumana, A.P.: Performance degradation of ieee 802.15.4 slotted csma/ca due to hidden nodes, pp. 264–266 (2007)
Johnson, D.B., Maltz, D.A.: Dinamic source routing in ad hoc wireless networks. Mobile Computing 353, 153–181 (1996)
Jurdak, R., Ruzzelli, A.G., O’Hare, G.M.P., Higgs, R.: Directed broadcast with overhearing for sensor networks. To appear on Transactions for Sensor Networks 2, 1443–1448 (2009)
Maróti, M., Kusy, B., Simon, G., Lédeczi, Á.: The flooding time synchronization protocol. In: Proc. of Sensys 2004 the 2nd Conference on Embedded networked sensor systems, pp. 39–49 (2004)
Moon, S., Kim, T., Cha, H.: Enabling low power listening on ieee 802.15.4-based sensor nodes. In: Proc. of WCNC 2007, Wireless Communications and Networking Conference, March 11-15, pp. 2305–2310 (2007)
Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proc. of WMCSA the Second IEEE Workshop on Mobile Computer Systems and Applications, p. 90 (1999)
Petrova, M., Riihijarvi, J., Mahonen, P., Labella, S.: Performance study of ieee 802.15.4 using measurements and simulations. In: Proc. of WCNC 2006, Wireless Communications and Networking Conference, vol. 1, pp. 487–492 (2006)
Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proc. of Sensys 2004, the 4th Conference on Embedded networked sensor systems, pp. 95–107 (2004)
Ruzzelli, A.G., O’Hare, G.M.P., O’Grady, M.J., Jurdak, R.: Merlin: Cross-layer integration mac and routing for low duty-cycle sensor networks. Elsevier Journal Ad Hoc Networks Special Issue on Energy efficient design in wireless ad hoc and sensor networks 5(8) (2008)
Suh, C., Ko, Y.-B., Lee, C.-H., Kim, H.-J.: Numerical analysis of the idle listening problem in ieee 802.15.4 beacon-enable mode, pp. 1–5 (2006)
Vyas, A.K., Tobagi, F.A.: Impact of interference on the throughput of a multihop path in a wireless network. In: Proc. of Conference on Broadband Communications, Networks and Systems, pp. 39–49 (2006)
Woon, W.T.H., Wan, T.-C.: Performance evaluation of ieee 802.15.4 wireless multi-hop networks: Simulation and testbed approach. Int. J. Ad Hoc Ubiquitous Comput. 3(1), 57–66 (2008)
Woon, W.T.H., Wan, T.C.: Performance evaluation of ieee 802.15.4 ad hoc wireless sensor networks: Simulation approach. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2006, vol. 2, pp. 1443–1448 (2006)
You-min, Z., Mao-heng, S., Peng, R.: An enhanced scheme for the ieee 802.15.4 multi-hop network. In: Wireless Communications, Networking and Mobile Computing, WiCOM 2006, pp. 1–4 (2006)
Zheng, J., Lee, M.J.: A comprehensive performance study of ieee 802.15.4, 218237 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Ruzzelli, A.G., Schoofs, A., O’Hare, G.M.P., Aoun, M., van der Stok, P. (2010). Coordinated Sleeping for Beaconless 802.15.4-Based Multihop Networks. In: Hailes, S., Sicari, S., Roussos, G. (eds) Sensor Systems and Software. S-CUBE 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11528-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-11528-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11527-1
Online ISBN: 978-3-642-11528-8
eBook Packages: Computer ScienceComputer Science (R0)