Skip to main content

Improving Optical Flow Using Residual and Sobel Edge Images

  • Conference paper
Arts and Technology (ArtsIT 2009)

Abstract

Optical flow is a highly researched area in low-level computer vision. It is a complex problem which tries to solve a 2D search in continuous space, while the input data is 2D discrete data. Furthermore, the latest representations of optical flow use Hue-Saturation-Value (HSV) colour circles, to effectively convey direction and magnitude of vectors. The major assumption in most optical flow applications is the intensity consistency assumption, introduced by Horn and Schunck. This constraint is often violated in practice. This paper proposes and generalises one such approach; using residual images (high-frequencies) of images, to remove the illumination differences between corresponding images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Proc. Eurographics Symp. Rendering, pp. 1–11 (2003)

    Google Scholar 

  5. .enpeda. dataset 2 (EISATS), http://www.mi.auckland.ac.nz/EISATS

  6. Galvin, B., McCane, B., Novins, K., Mason, D., Mills, S.: Recovering motion fields: an evaluation of eight optical flow algorithms. In: Proc. 9th British Machine Vision Conf., pp. 195–204 (1998)

    Google Scholar 

  7. Haussecker, H., Fleet, D.J.: Estimating optical flow with physical models of brightness variation. IEEE Trans. Pattern Analysis Machine Intelligence 23, 661–673 (2001)

    Article  Google Scholar 

  8. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  9. Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Analysis Machine Intelligence 7, 165–177 (1985)

    Article  Google Scholar 

  10. Lee, J.-S.: Digital image smoothing and the sigma filter. Computer Vision, Graphics, and Image Processing 24, 255–269 (1983)

    Article  Google Scholar 

  11. McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow. Computer Vision and Image Understanding 84, 126–143 (2001)

    Article  MATH  Google Scholar 

  12. Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust variational optical flow with photometric invariants. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Middlebury Optical Flow Evaluation, http://vision.middlebury.edu/flow/

  14. Morales, S., Woo, Y.W., Klette, R., Vaudrey, T.: A study on stereo and motion data accuracy for a moving platform. In: Proc. Int. Conf. on Social Robotics, ICSR (to appear, 2009)

    Google Scholar 

  15. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. Pattern Classification and Scene Analysis, 271–272 (1973)

    Google Scholar 

  17. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. IEEE Int. Conf. Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  18. Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In: Proc. IEEE Image and Vision Conf., New Zealand (2008), doi:10.1109/IVCNZ.2008.4762133

    Google Scholar 

  19. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L1 optical flow. In: Post Proc. Dagstuhl Motion Workshop (to appear, 2009)

    Google Scholar 

  20. van de Weijer, J., Gevers, T.: Robust optical flow from photometric invariants. In: Proc. Int. Conf. on Image Processing, pp. 1835–1838 (2004)

    Google Scholar 

  21. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Vaudrey, T., Wedel, A., Chen, CY., Klette, R. (2010). Improving Optical Flow Using Residual and Sobel Edge Images. In: Huang, F., Wang, RC. (eds) Arts and Technology. ArtsIT 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11577-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11577-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11576-9

  • Online ISBN: 978-3-642-11577-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics