Skip to main content

Geometric Design Using Space Curves with Rational Rotation-Minimizing Frames

  • Conference paper
Mathematical Methods for Curves and Surfaces (MMCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5862))

Abstract

A rotation–minimizing adapted frame (f 1(t),f 2(t),f 3(t)) on a given space curve r(t) is characterized by the fact that the frame vector f 1 coincides with the tangent t = r′/ |r′|, while the frame angular velocity ω maintains a zero component along it, i.e., ω·t ≡ 0. Such frames are useful in constructing swept surfaces and specifying the orientation of a rigid body moving along a given spatial path. Recently, the existence of quintic polynomial curves that have rational rotation–minimizing frames (quintic RRMF curves) has been demonstrated. These RRMF curves are necessarily Pythagorean–hodograph (PH) space curves, satisfying certain non–linear constraints among the complex coefficients of the Hopf map representation for spatial PH curves. Preliminary results on the design of quintic RRMF curves by the interpolation of G 1 spatial Hermite data are presented in this paper. This problem involves solving a non–linear system of equations in six complex unknowns. The solution is obtained by a semi–numerical scheme, in which the problem is reduced to computing positive real roots of a certain univariate polynomial. The quintic RRMF G 1 Hermite interpolants possess one residual angular degree of freedom, which can strongly influence the curve shape. Computed examples are included to illustrate the method and the resulting quintic RRMF curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, R.L.: There is more than one way to frame a curve. American Mathematical Monthly 82, 246–251 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Choi, H.I., Han, C.Y.: Euler–Rodrigues frames on spatial Pythagorean-hodograph curves. Computer Aided Geometric Design 19, 603–620 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, H.I., Lee, D.S., Moon, H.P.: Clifford algebra, spin representation, and rational parameterization of curves and surfaces. Advances in Computational Mathematics 17, 5–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Farouki, R.T.: Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves. Graphical Models 64, 382–395 (2002)

    Article  MATH  Google Scholar 

  5. Farouki, R.T.: Pythagorean–Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  6. Farouki, R.T., al–Kandari, M., Sakkalis, T.: Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves. Advances in Computational Mathematics 17, 369–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farouki, R.T., Giannelli, C.: Spatial camera orientation control by rotation–minimizing directed frames. Computer Animation and Virtual Worlds 20, 457–472 (2009)

    Article  Google Scholar 

  8. Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Identification of spatial PH quintic Hermite interpolants with near–optimal shape measures. Computer Aided Geometric Design 25, 274–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Quintic space curves with rational rotation–minimizing frames. Computer Aided Geometric Design 26, 580–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farouki, R.T., Giannelli, C., Sestini, A.: Helical polynomial curves and double Pythagorean hodographs I. Quaternion and Hopf map representation. Journal of Symbolic Computation 44, 161–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farouki, R.T., Han, C.Y.: Rational approximation schemes for rotation–minimizing frames on Pythagorean–hodograph curves. Computer Aided Geometric Design 20, 435–454 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guggenheimer, H.: Computing frames along a trajectory. Computer Aided Geometric Design 6, 77–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, C.Y.: Nonexistence of rational rotation–minimizing frames on cubic curves. Computer Aided Geometric Design 25, 298–304 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jüttler, B., Mäurer, C.: Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling. Computer Aided Design 31, 73–83 (1999)

    Article  MATH  Google Scholar 

  15. Klok, F.: Two moving coordinate frames for sweeping along a 3D trajectory. Computer Aided Geometric Design 3, 217–229 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sir, Z., Jüttler, B.: Spatial Pythagorean hodograph quintics and the approximation of pipe surfaces. In: Martin, R., Bez, H., Sabin, M. (eds.) Mathematics of Surfaces XI, pp. 364–380. Springer, Berlin (2005)

    Chapter  Google Scholar 

  17. Wang, W., Joe, B.: Robust computation of the rotation minimizing frame for sweep surface modelling. Computer Aided Design 29, 379–391 (1997)

    Article  Google Scholar 

  18. Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Transactions on Graphics 27(1), Article 2, 1–18 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farouki, R.T., Giannelli, C., Sestini, A. (2010). Geometric Design Using Space Curves with Rational Rotation-Minimizing Frames. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, JL., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol 5862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11620-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11620-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11619-3

  • Online ISBN: 978-3-642-11620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics