Abstract
Quasi-hierarchical Powell-Sabin (QHPS) splines are quadratic splines with a global C 1-continuity. They are defined on a locally refined hierarchical triangulation, and they admit a compact representation in a normalized B-spline basis. We show that sufficiently smooth functions and their derivatives can be approximated up to optimal order by a Hermite interpolating QHPS spline.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Powell, M., Sabin, M.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3, 316–325 (1977)
Dierckx, P.: On calculating normalized Powell-Sabin B-splines. Comput. Aided Geom. Design 15, 61–78 (1997)
He, Y., Jin, M., Gu, X., Qin, H.: A C 1 globally interpolatory spline of arbitrary topology. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) Proc. 3rd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, Beijing, China, pp. 295–306 (2005)
Dierckx, P., Van Leemput, S., Vermeire, T.: Algorithms for surface fitting using Powell-Sabin splines. IMA J. Numer. Anal. 12, 271–299 (1992)
Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell-Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007)
Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell-Sabin B-splines. Comput. Aided Geom. Design 26, 174–191 (2009)
Grinspun, E., Krysl, P., Schröder, P.: CHARMS: a simple framework for adaptive simulation. ACM Trans. Graphics 21, 281–290 (2002)
Speleers, H., Dierckx, P., Vandewalle, S.: On the L p -stability of quasi-hierarchical Powell-Sabin B-splines. In: Neamtu, M., Schumaker, L. (eds.) Approximation Theory XII: San Antonio 2007, pp. 398–413. Nashboro Press (2008)
Kroó, A., Révész, S.: On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies. J. Approx. Theory 99, 134–152 (1999)
Brenner, S., Scott, L.: The mathematical theory of finite element methods, 2nd edn. Springer, Heidelberg (2002)
Lai, M., Schumaker, L.: On the approximation power of bivariate splines. Adv. Comput. Math. 9, 251–279 (1998)
Lai, M., Schumaker, L.: Spline Functions on Triangulations. Encyclopedia of Mathematics and its Applications, vol. 110. Cambridge University Press, Cambridge (2007)
Maes, J., Bultheel, A.: Surface compression with hierarchical Powell-Sabin B-splines. Int. J. Wav. Multires. Inf. Proc. 4, 177–196 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Speleers, H., Dierckx, P., Vandewalle, S. (2010). On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, JL., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol 5862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11620-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-11620-9_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11619-3
Online ISBN: 978-3-642-11620-9
eBook Packages: Computer ScienceComputer Science (R0)