Abstract
Recently, the Adaptive Delaunay Tessellation (Adt) was introduced in the context of computational mechanics as a tool to support Voronoi-based nodal integration schemes in the finite element method. While focusing on applications in mechanical engineering, the former presentation lacked rigorous proofs for the claimed geometric properties of the Adt necessary for the computation of the nodal integration scheme. This paper gives pending proofs for the three main claims which are uniqueness of the Adt, connectedness of the Adt, and coverage of the Voronoi tiles by adjacent Adt tiles. Furthermore, this paper provides a critical assessment of the Adt for arbitrary point sets.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shewchuk, J.: What is a good linear element? Interpolation, conditioning, and quality measures. In: Proc. Eleventh Int. Meshing Roundtable, Ithaca, New York, pp. 115–126. Sandia National Laboratories (2002)
Lohner, R.: Progress in grid generation via the advancing front technique. Eng. with Computers 12, 186–210 (1996)
Tournois, J., Alliez, P., Devillers, O.: Interleaving delaunay refinement and optimization for 2D triangle mesh generation. In: Proc. 16th Int. Meshing Roundtable (2007)
Bossen, F., Heckbert, P.: A pliant method for anisotropic mesh generation. In: Proc. 5th Int. Meshing Roundtable, pp. 63–74 (1996)
Antani, L., Delage, C., Alliez, P.: Mesh sizing with additively weighted voronoi diagrams. In: Proc. 16th Int. Meshing Roundtable (2007)
Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. Mathematics and Visualization. Springer, Secaucus (2006)
Constantiniu, A., Steinmann, P., Bobach, T., Farin, G., Umlauf, G.: The adaptive delaunay tessellation: A neighborhood covering meshing technique. Computational Mechanics 42(5), 655–669 (2008)
Sukumar, N., Moran, B., Semenov, A., Belikov, V.: Natural neighbour Galerkin methods. Int. J. for Numerical Methods in Engineering 50, 1–27 (2001)
Chen, J., Wu, C., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bobach, T., Constantiniu, A., Steinmann, P., Umlauf, G. (2010). Geometric Properties of the Adaptive Delaunay Tessellation. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, JL., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol 5862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11620-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-11620-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11619-3
Online ISBN: 978-3-642-11620-9
eBook Packages: Computer ScienceComputer Science (R0)