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Abstract. Recently, the Adaptive Delaunay Tessellation (Adt) was in-
troduced in the context of computational mechanics as a tool to support
Voronoi-based nodal integration schemes in the finite element method.
While focusing on applications in mechanical engineering, the former pre-
sentation lacked rigorous proofs for the claimed geometric properties of
the Adt necessary for the computation of the nodal integration scheme.
This paper gives pending proofs for the three main claims which are
uniqueness of the Adt, connectedness of the Adt, and coverage of the
Voronoi tiles by adjacent Adt tiles. Furthermore, this paper provides a
critical assessment of the Adt for arbitrary point sets.

1 Introduction

One building block in finite element analysis is the background tessellation of
a spatial domain, where requirements vary with the applications at hand. The
corresponding field of mesh generation traditionally focuses on the generation of
both vertex positions and connectivity, starting from a description of the domain
boundary. Vertices are placed heuristically to adaptively sample local features
and maintain a good shape of the resulting elements, although the discussion
about the optimal shape is not settled even for triangles [1]. The tessellation can
be done in ad-hoc constructions [2], iteratively [3], or based on guidance fields
[4,5] to name a few. In the rare occasion of a predetermined set of vertices, the
choice of methods is generally limited to the constrained Delaunay triangulation
or other, data-dependent, triangulations [6].

In [7], a novel tessellation technique, called Adaptive Delaunay Tessellation
(Adt), was introduced in the context of computational mechanics as a tool to
support Voronoi-based nodal integration schemes in the Finite Element Method.
Its main contribution is a simplified access to the element structure that supports
nodal integration schemes based on a robust and unique transformation of the
Delaunay triangulation. While focusing on the applications in linear elasticity,
the presentation in [7] lacks rigorous proofs for the geometric properties of the
Adt which are uniqueness of the Adt, connectedness of the Adt, and coverage
of the Voronoi tiles by adjacent Adt tiles. These properties are essential for the



computation of the nodal integration scheme. The pending proofs for these main
claims are given in this paper.

We start with a motivation for the Adt and introduce some notation used in
the rest of this paper in Section 2. Uniqueness and connectedness of the Adt are
stated and proved in Sections 3.1 and 3.2. Section 3.3 introduces an alternative
characterization of the Adt to simplify the proof of the last important property
in Section 3.4 on the coverage of the Voronoi tile of a vertex by Adt elements
adjacent to it. We discuss the Adt in Section 4 and conclude in Section 5.

1.1 Linear Elasticity and Nodal Integration in the Finite Element
Method

The Finite Element Method encompasses a wide range of applications to model
complex continuous phenomena based on a description composed of many small
parts, called finite elements, which allow a structurally simpler definition of the
phenomenon. In the field of computational mechanics, which is the main target
of the Adt, one of the most basic and well-studied problems is that of linear
elasticity, from which we sketch the key aspects in a simplified form.

The Finite Element Method typically requires the evaluation of the integral∫
Ω

∇ψ · f

for the so-called test function ψ, and some function f . In general, ψ is an inter-
polant that is defined piecewise over the elements Ωi of the domain. This allows
the decomposition of the global integral into a sum of local integrals,∑

i

∫
Ωi

∇ψ · f.

This is the heart of the Finite Element Method and allows the numerical assess-
ment of the problem by concentrating on its local reformulation for each Ωi and
the associated local interpolant ψi = ψ

∣∣∣Ωi
. Disadvantages of the element-based

approach are the requirement of derivatives of the test function ψ, and numerical
problems if the elements Ωi are badly shaped, as discussed in [1].

One remedy for these problems is to turn to meshless methods, for which
the discretization focuses on vertices rather than elements. One meshless ap-
proach based on natural neighbor coordinates has been proposed in [8]. Another
meshless technique is nodal integration, as introduced in [9]. Here, an alternative
tessellation of the domain is considered, where the vertices vj are enclosed by
polygons Tj , with Ω =

⋃
j Tj and the above integral becomes∑

j

∫
Tj

∇ψ · f,

assigning a part of the integral to each node vj rather than to an element Ωi.
The canonical choice for this tessellation is the Voronoi diagram of the vertices



vj of the background tessellation, restricted to Ω. The application of Stokes’
theorem allows to write ∫

Tj

∇ψ · f =
∫
∂Tj

n · ψ · f,

where n is the outward pointing unit vector. By turning the area integral into
a path integral, no derivatives of ψ are required, but now the local integration
domains Ti do no longer correspond to the elements Ωj of the background tes-
sellation. Therefore, the computation of the path integral for each node can no
longer be carried out on a per-element basis, but requires the evaluation of the
test function ψ at arbitrary positions along ∂Tj .

1.2 Voronoi Tile Coverage in the ADT

(a) (b)

(c) (d)

Fig. 1. Example of an Adt tessellation. The point cloud with its Voronoi diagram in
green and the Delaunay triangulation in black is shown in (a). The closeup of a node
with shaded triangles depicting the necessary cover for its Voronoi tile is shown in (b).
The corresponding Adt with polygons shaded according to valence is shown in (c). In
the closeup (d), it is apparent that the adjacent Adt polygons cover the Voronoi tile.

By covering the Voronoi tile of a vertex with a minimal set of adjacent poly-
gons, the computational assessment of Voronoi-based nodal integration is greatly



simplified. Figure 1 shows a set of scattered points covering a rectangular do-
main. The boundary of the Voronoi tile shown in Figure 1(b) is a convex polygon
that intersects certain triangles in the Delaunay triangulation of the point set,
which are not necessarily adjacent to the Voronoi site. The Adt, on the other
hand, consists of polygons that are big enough to cover the whole Voronoi tile.
Thus, by traversing the polygons adjacent to a vertex, one has access to an area
that completely covers the Voronoi tile of that vertex.

2 The Adaptive Delaunay Tessellation

Before presenting the main findings, we introduce the necessary notation and
repeat some important results.

We consider the canonical open ball topology on R2 and denote by [Ω] the
topological closure of a set Ω, by ]Ω[ its topological interior, and by ∂Ω :=
[Ω]\]Ω[ its topological boundary. For a set P ⊂ R2 of points, we denote by
C (P) =]C (P)[∪ ∂C (P) the convex hull of P.

We denote by (F,E) a partition of C (P) into polygonal faces f ∈ F that
join along edges e ∈ E. By Del(P) := (FDel, EDel) we refer to a Delaunay
triangulation of P, composed of triangular faces f ∈ FDel ⊂ P3 and edges
e ∈ EDel ⊂ P2. We will use f and e to both denote the set of vertices from P
and their geometric realizations. Two faces f1 and f2 with f1 ∩ f2 = e ∈ EDel

are called neighbors with common edge e. We consider angles greater or equal
π/2 as obtuse and a triangle with an obtuse interior angle is called obtuse. The
longest edge of an obtuse triangle f is opposite to its obtuse angle and will be
denoted by e>f = arg maxe∈f |e|. Whenever the term e>f is used, f implicitly
represents an obtuse triangle. For a triangle f ∈ FDel we denote by cc(f) its
circumcenter. Note that a triangle f is obtuse if it does not contain cc(f) in its
interior and that cc(f) lies on the opposite side of e> as the obtuse angle.

We denote byG = (P, E), a graph over P, where P represents the set of graph
vertices and E ⊂ P2 the set of of edges. A sequence of vertices ρ = (p1, . . . ,pn),
(pi,pi+1) ∈ E, is a path of length |ρ| = n if none of its edges appears more than
once, i.e., edges are mutually distinct. A path is called closed if (pn,p1) ∈ E. We
assume a path to be free of loops of length one, i.e., edges (pi,pi). The Delaunay
triangulation itself represents an undirected, connected graph GDel = (P, EDel).

The Voronoi diagram of P is the partition of R2 into convex polygons Tp,
called Voronoi tiles of p, such that every point in Tp is not farther from p than
from any other vertex in P. For each vertex p ∈ P \ ∂C (P), its Voronoi tile is
equal to Tp = C ({cc(f) | f ∈ FDel, p ∈ f}), and we also call p a Voronoi site.

With these definitions the Adaptive Delaunay Tessellation is defined as in
[7]:

Definition 1 (Adaptive Delaunay Tessellation). Let P ⊂ R2, Del(P) =
(FDel, EDel) and

E> = {e>f | f ∈ FDel ∧ e>f 6⊂ ∂C (P)}.



The tessellation of C (P) represented by (FAdt, EDel \ E>), where FAdt is the
set of faces generated by merging triangles with common edges in E>, is called
the Adaptive Delaunay Tessellation Adt(P).

Thus, the Adt of a point set is the result of removing from a Delaunay trian-
gulation of P of each obtuse triangle the longest edge, if this is not a boundary
edge. Since no new edges are generated in Adt(P), each triangle f ∈ FDel is
part of some polygon g ∈ FAdt, which we denote by A (f) = g ⊃ f ∈ FDel.

3 Geometric Properties of the Adt

In this section we will discuss some of the geometric properties of Adt(P), i.e.,
uniqueness, connectedness, and the inclusion of Voronoi tiles. The last property
states that the Voronoi tile of each p ∈ P is contained in the union of p’s
adjacent faces from Adt(P).

3.1 Uniqueness of the Adt

Proposition 1 (Uniqueness). For any non-collinear set of points P ⊂ R2,
Adt(P) exists and is unique.

Proof. We will show that E> contains all edges of EDel that are non-unique.
For any non-collinear point set P, Del(P) exists, and is non-unique, if there

are at least n ≥ 4 points p1, . . . ,pn with a common empty circumcircle C
with circumcenter c, i.e., P∩ ]C[= ∅. The convex hull of these points can be
triangulated arbitrarily by edges e1, . . . , en−3 without violating the Delaunay
condition, see Figure 2(a). Every ei connects two points not neighboring on the
circumcircle and belongs to two triangles of the triangulation of C ({p1, . . . ,pn}).
Because there is at most one non-obtuse triangle containing the circumcenter c,
every edge ei belong to at least one obtuse triangle. Furthermore, every edge ei
is the longest edge of the obtuse triangle that lies on the opposite side of ei with
respect to c. Thus, ei ∈ E>.

In case c lies on an edge, say ej , then ej ∈ E>, because at least one of its
triangles is rectangular, see Figure 2(b). So, all ei are in E>, such that EDel\E>
is unique. ut

Remark 1. If in the above setting the common edge e of two triangles is passing
through the common circumcenter, both triangles are rectangular, i.e., obtuse,
and e is removed.

3.2 Connectedness of the Adt

Before stating the second geometric property, we introduce some results used in
its proof. For every obtuse triangle f with longest edge e>f and neighbor f ′, i.e.,
f ∩ f ′ = e>f , we use

N(f) := f ′
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Fig. 2. Points p1, . . . ,pn on a common circumcircle C with center c inside a triangle
(a) or on an edge ej (b).

to denote neighbor f ′ of f opposite to the obtuse angle. This relation imposes
a sub-graph of the dual Delaunay triangulation on the faces of Del(P). For
non-obtuse triangles or if e>f ⊂ ∂C (P), we set N(f) = ∅, and N(∅) = ∅. This
induces the directed graph

−→
GDel := (FDel,

−→
EDel), (1)

−→
EDel := { (f,N(f)) | f ∈ FDel ∧ N(f) 6= ∅}.

Each −→e ∈
−→
EDel is associated with one Delaunay edge e ∈ E>.

In the proof we use the following lemma, which implies that the lengths of
the longest edges of obtuse triangles grow along a path in

−→
GDel.

Lemma 1. For f ∈ FDel with N(f) 6= ∅,

e>f 6= e>N(f) ⇒ |e
>
f | < |e

>
N(f)|. (2)

Proof. We first show that there cannot be obtuse angles facing the same edge
unless they are both right angles. Consider Figure 3(a) and assume 4ABC and
4CDA with common edge AC are triangles in a Delaunay triangulation. Let
D′ be a point on the circumcircle C of 4ABC right of AC. Since �ABCD′ is a
circular, simple quadrilateral, ∠ABC +∠CD′A = π. By the Delaunay criterion,
D must either be on or outside C, and comparison to the inscribed angle yields
∠CDA ≤ ∠CD′A = π − ∠ABC. The only obtuse angles that yield equality are
∠CDA = ∠ABC = π/2, in which case e>f = e>N(f).

In all other cases, i.e., e>f 6= e>N(f), we find e>f adjacent to the obtuse angle
in N(f) and therefore shorter than e>N(f), see Figure 3(b). This yields (2). ut
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Fig. 3. (a) Two Delaunay triangles with the circumcircle of 4ABC. (b) |e>
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Now we can state the result which guarantees that the transformation from
Delaunay to adaptive Delaunay does not lead to unconnected elements such as
orphaned vertices or even disconnected sub-graphs.

Proposition 2 (Connectedness). For Adt(P) = (FAdt, EAdt) the graph
GAdt = (P, EAdt) is connected.

Proof. GAdt is a sub-graph of GDel, and GDel is connected. An edge of GDel

is not in GAdt if and only if its dual edge is in
−→
GDel. The smallest subset of

GAdt which can be disconnected consists of a single vertex. Boundary vertices
cannot be disconnected, since the duals of boundary edges are by definition not
in
−→
GDel. An inner vertex in a Delaunay triangulation has a minimum valence of

three, which means it cannot be disconnected in GAdt unless there is a closed
path of length greater or equal to three in

−→
GDel.

We show that a path ρ can only be closed if it has length |ρ| = 2. Let without
loss of generality ρ = (f1, . . . , fn) be a path in

−→
GDel, i.e., fi+1 = N(fi). First

assume e>fi
6= e>fi+1

, 1 ≤ i < n. With (2) we get

|e>f1 | < |e
>
f2
| < · · · < |e>fn

|.

If ρ were closed, N(fn) = f1 and e>fn
= f1 ∩ fn is both an edge of f1 and larger

than e>f1 . Since this is a contradiction to e>f1 being the largest edge in f1, ρ cannot
be closed.

Now assume there is an i such that e>fi
= e>fi+1

. Since elements in ρ are
mutually distinct and N(fi+1) = fi, fi+1 is the last element in ρ and n = i+ 1.
For ρ to be closed, N(fn) = f1 must hold. Thus

N(fn) = N(fi+1) = fi = f1,

which leaves i = 1 and n = 2, and ρ can only be closed if it has length 2. Since
the longest closed path in

−→
GDel has length |ρ| = 2, GAdt is connected. ut



Remark 2 (Implementation). From the above reasoning it appears that numer-
ical instabilities might flip the inequalities and result in ambiguous or even in-
consistent results. However, the only setting where the inequalities in (2) are
“only just” fulfilled arises with co-circular points, where the uniqueness of the
Adt should be forced by allowing an epsilon threshold.

3.3 An Alternative Characterization for the Adt

In the following, we make use of an alternative characterization of the Adt,
involving the following construction, see Figures 4(a) and 4(b).

Definition 2 (Polygonal Extension PE(f)). For each triangular face f , we
define

PE(f) =]C (f ∪ {cc(f)})[∪{cc(f)}
as the Polygonal Extension of f , where cc(f) denotes the circumcenter of f .

Note that PE(f) does not contain its boundary except for the circumcenter
itself, which is necessary to cover the case of rectangular triangles, as we will see
later. We know that if f is non-obtuse, we get

cc(f) ∈]f [, and ]f [= PE(f). (3)

If f is obtuse, then PE(f) extends over e>f , and

cc(f) /∈]f [, and e>f ∩ PE(f) 6= ∅. (4)

The following lemma is required in the proof of Proposition 3.

Lemma 2. Let f be an obtuse triangle and f ′ = N(f) 6= ∅. Then,

PE(f) \ f ⊂ PE(f ′). (5)

Proof. Consider triangles f = 4ABC, f ′ = 4ACD and their circumcenters
cc(f), cc(f ′) in Figure 4(c). It is sufficient to show that the excess area PE(f)\f
given by ]C (A,C, cc(f))[ is already contained in a subset of PE(f ′) given by
]C (A,C, cc(f ′))[, as illustrated in Figure 4(d).

By definition, f shares the e>f = AC with its neighbor f ′ = N(f). The
circumcenters cc(f) and cc(f ′) lie on the perpendicular bisector of e>f on the
same side of e>f as D. By the Delaunay empty circumcircle criterion, D is outside
the circumcircle of f , and on the side of e>f opposite to B, thus the distance of
cc(f ′) to e>f is greater or equal to that of cc(f). Consequently,

C ({A,C, cc(f)} ⊂ C ({A,C, cc(f ′)}) ⊂ C ({A,C, cc(f ′), D}).

This relation also applies to the interior of these sets, which means

PE(f) \ f = ]C ({A,C, cc(f)})[
⊂ ]C ({A,C, cc(f ′), D})[∪{cc(f ′)} = PE(f ′),

see Figure 4(d). Note that in case of a rectangular triangle, the circumcenter lies
on its obtuse edge, and ]C ({A,C, cc(f)})[ = ∅ ⊂ PE(f ′) for arbitrary f ′. ut
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Fig. 4. Geometric interpretation of the polygonal extension PE(f).

Lemma 2 implies an equivalent characterization for the set of edges E> that are
removed when transforming a Delaunay triangulation into an Adt.

Proposition 3. Let Del(P) = (FDel, EDel) and E> as in Definition 1. Then

e ∈ E> ⇔ ∃f ∈ FDel : e ∩ PE(f)∩]C (P)[ 6= ∅.

So, an adaptive Delaunay tessellation can also be created by merging all triangles,
whose polygonal extensions intersect, into polygons.

Proof. ”⇒”: If e ∈ E>, then e = e>f for some obtuse f ∈ FDel, and
e∩ ]C (P)[ 6= ∅. Then, (4) yields also e ∩ PE(f)∩ ]C (P)[ 6= ∅.

”⇐”: Let e ∩ PE(f)∩ ]C (P)[ 6= ∅ for an f ∈ FDel. If e is an edge of f then
e = e>f and e ∈ E>. Otherwise, e 6= e>f , and e∩PE(f)\ f 6= ∅. By Lemma 2
there exists an obtuse triangle f ′ such that e ∩ PE(f ′) 6= ∅. This argument



applies iteratively until e is an edge of f ′. Since |FDel| is finite and the subset
relation in Lemma 2 is strict, this iteration terminates with a f ′ ∈ FDel such
that e is an edge of f ′. The final f ′ exists, otherwise e would intersect the
interior of a triangle and Del(P) was no triangulation. ut

The relation of triangles, polygonal extensions and Adt faces is captured in the
following result.

Proposition 4. For every f ∈ FDel,

f ⊆ [PE(f)] ∩ C (P) ⊆ A (f). (6)

Proof. The left inclusion is true by construction of PE(f) and f ⊆ C (P).
The right inclusion is more difficult to show. If a triangle f is non-obtuse, or

rectangular, cc(f) ∈ f and [PE(f)] = f ⊆ A (f). In all other cases, f is obtuse
and cc(f) /∈ f . If e>f is on the boundary of C (P), then [PE(f)] ∩ C (P) = f ⊆
A (f). Otherwise, f is obtuse and there is a triangle f ′ = N(f) such that

PE(f) \ f ⊆ PE(f ′) by (5),
⇒ PE(f) ⊆ f ∪ PE(f ′),
⇒ [PE(f)] ⊆ f ∪ [PE(f ′)],
⇒ [PE(f)] ∩ C (P) ⊆ f ∪ [PE(f ′)] ∩ C (P).

Since A (f) = A (f ′), the claim holds if we can prove [PE(f ′)]∩C (P) ⊆ A (f ′).
The argument applies repeatedly until f ′ is non-obtuse, rectangular, or has its
obtuse edge on the boundary of C (P) following a path ρ in

−→
GDel. In the proof

for Proposition 2 we showed that every path ρ ends in a triangle f that is either
non-obtuse, has e>f on the convex hull, or in a loop consisting of two rectangular
triangles. Therefore, the repeated application of the argument terminates and
the claim is proved. ut

An important observation following immediately from the above Proposition
is given in the following corollary:

Corollary 1. For every f ∈ FDel with cc(f) ∈ C (P) : cc(f) ∈ A (f).

3.4 Coverage of Voronoi Tiles

The last property we are going to prove is the coverage of a vertex’ Voronoi
tile by its adjacent Adt tiles, as illustrated in Figure 5(a). With this property,
the adjacency information contained in the Adt is sufficient to access the whole
area covered by the Voronoi cell of a vertex.

Proposition 5 (Inclusion of Voronoi Tile). If Tp denotes the Voronoi tile
of p ∈ P, then

Tp ∩ C (P) ⊂
⋃

g∈FAdt
g3p

g.
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Fig. 5. Voronoi coverage of adjacent Adt tiles.

Proof. First assume that p /∈ ∂C (P), i.e., Tp is finite as in Figure 5(a). p has
a set of adjacent triangles {f}f3p, which in turn are adjacent via the edges
{e}e3p. For each edge e 3 p and triangles f1 ∩ f2 = e, we get a new triangle
Ae = C ({p, cc(f1), cc(f2)}), see Figure 5(b). This partitions Tp,

Tp =
⋃
e3p

Ae.

So we will show that each Ae ∩C (P) is covered by A (f1)∪A (f2) for two cases:

– cc(f1) and cc(f2) are on opposite sides of e, see Figure 5(c): So cc(f1) and
cc(f2) are located on the perpendicular bisector of e that intersects e in me.
We can split Ae into A1

e = C ({p, cc(f1),me}) and A2
e = C ({p, cc(f2),me})

with Ae = A1
e ∪ A2

e. Since me,p, cc(f1) ∈ [PE(f1)], (6) guarantees that
A1
e ∩ C (P) ⊂ A (f1) and analogously for A2

e.
– cc(f1) and cc(f2) are on the same side of or on e, see Figure 5(d): Without

loss of generality, let f1 be obtuse. We know cc(f1) ∈ PE(f1)\f1 and by (5),
cc(f1) ∈ PE(f2). Since cc(f2) ∈ PE(f2) as well, cc(f1), cc(f2),p ∈ [PE(f2)],
and from the convexity of [PE(f2)] it follows that Ae ∩ C (P) ⊂ PE(f2) ∩
C (P) ⊂ A (f2).

Now consider the case that p ∈ ∂C (P), and Tp becomes infinite. The ar-
gument goes as above except for the two edges e1, e2 ⊂ ∂C (P) adjacent to p
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Fig. 6. Coverage of Adt tiles on the boundary of C (P). (a) For p ∈ ∂C (P), e1 and e2

have only one adjacent triangle each. (b) Contribution of Ae1 to Tp. (c) Contribution
of Ae2 to Tp.

which have only one adjacent triangle each, say f1 respective f2, as illustrated in
Figure 6(a). Corresponding to the above two cases, let without loss of general-
ity cc(f1) /∈ C (P) like in Figure 6(b). Because Ae1 is outside the convex hull, it
does not contribute to Tp∩C (P) and needs not be considered. Now, let without
loss of generality cc(f2) ∈ C (P) like in Figure 6(c). The contribution of Ae2 to
Tp ∩ C (P) is given by C (p,me2 , cc(f2)) ⊂ f2 ⊂ A (f2).

Consequently, all parts Ae ∩ C (P) are covered by Adt polygons, which are
the covers of adjacent Delaunay triangles and thus also adjacent to p. ut

4 Discussion

The Adt is optimal only under specific conditions, i.e., if the vertex positions
cannot be changed, and the Voronoi tile of each vertex needs to be covered by
adjacent polygons. A very homogeneous point set with all non-obtuse triangles
is shown in Figure 7(a). In this setting, the Delaunay triangulation and the Adt
are identical. Figure 7(b) shows a point set in which ill-shaped triangles are
merged into Adt polygons, thus improving the overall tile shape. Figure 7(c)
demonstrates a situation where the Adt produces non-convex polygons, and the
extreme case of a “hanging edge” is illustrated in Figure 7(d). Apart from these
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Fig. 7. Several levels of badness in the point cloud. (a) very regular, (b) some obtuse
triangles, (c) constellation leading to non-convex Adt tiles, (d) constellation leading
to flapping edge, (e) bad boundary elements.

artifacts inside the convex hull, which are rarely faced in practice, badly shaped
polygons frequently occur near the convex hull as a result of many degenerate
triangles, as illustrated in Figure 7(e). Arguably, the boundary polygons are of
better shape than the triangles they are composed of. In [7], a novel polygon
condition number has been introduced as a quality measure of polygonal tessel-
lations. Extensive statistical analysis of the Adt has shown that it considerably
improves the mean condition number of most unstructured triangulations over
interior elements, and results in moderate improvement for boundary elements.
The issues inside the convex hull can be handled by allowing vertices to move,
and a regularization step could lead to more well-shaped triangles and thus bet-
ter Adt-polygons. Furthermore, the boundary issues can be solved by insertion
of an adequate amount of vertices along the convex hull.



5 Conclusion

Certain nodal integration schemes, which are meshless extension of the Finite
Element Method, lead to new requirements on the background tessellation of
the domain which are no longer met by the popular Delaunay triangulation.
Particularly nodal integration schemes based on the Voronoi diagram of the
domain vertices entail the integration of an interpolant along the boundary of
Voronoi tiles. This leads to a desirable property of the background tessellation
referred to as the coverage of Voronoi tiles. To this end, the Adaptive Delaunay
Tessellation for planar domains has been introduced before, but no rigorous
proofs have been given.

In this paper we have introduced a simple, constructive definition of the
Adaptive Delaunay Tessellation based on the Delaunay triangulation of a point
set, and showed that it is unique, connected, and has the coverage of Voronoi
tiles property. We furthermore provided a critical assessment of some shortcom-
ings of the Adt that need to be considered in applications. This provides a
profound theoretical background for the application of this new tessellation for
nodal integration schemes in the Finite Element Method.
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