Abstract
Automata theory presents roughly three types of automata: finite automata, pushdown automata and Turing machines. The automata are treated as language acceptors, and the expressiveness of the automata models are considered modulo language equivalence. This notion of equivalence is arguably too coarse to satisfactorily deal with a notion of interaction that is fundamental to contemporary computing. In this paper we therefore reconsider the automaton models from automata theory modulo branching bisimilarity, a well-known behavioral equivalence from process theory that has proved to be able to satisfactorily deal with interaction. We investigate to what extent some standard results from automata theory are still valid if branching bisimilarity is adopted as the preferred equivalence.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories of Communicating Processes). Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2009)
Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science 51, 129–176 (1987)
Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular expressions under bisimulation. Journal of the ACM 54(2), 1–28 (2007)
Baeten, J.C.M., Cuijpers, P.J.L., van Tilburg, P.J.A.: A context-free process as a pushdown automaton. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 98–113. Springer, Heidelberg (2008)
Basten, T.: Branching bisimilarity is an equivalence indeed!. Information Processing Letters 58(3), 141–147 (1996)
Caucal, D.: On the transition graphs of Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 177–189. Springer, Heidelberg (2001)
van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)
van Glabbeek, R.J.: What is Branching Time Semantics and why to use it?. Bulletin of the EATCS 53, 190–198 (1994)
van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum I. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)
van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), 555–600 (1996)
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Pearson, London (2006)
Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
Moller, F.: Infinite results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)
Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theoretical Computer Science 37, 51–75 (1985)
Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baeten, J.C.M., Cuijpers, P.J.L., Luttik, B., van Tilburg, P.J.A. (2010). A Process-Theoretic Look at Automata. In: Arbab, F., Sirjani, M. (eds) Fundamentals of Software Engineering. FSEN 2009. Lecture Notes in Computer Science, vol 5961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11623-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-11623-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11622-3
Online ISBN: 978-3-642-11623-0
eBook Packages: Computer ScienceComputer Science (R0)