Skip to main content

A Process-Theoretic Look at Automata

  • Conference paper
Fundamentals of Software Engineering (FSEN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5961))

Included in the following conference series:

  • 506 Accesses

Abstract

Automata theory presents roughly three types of automata: finite automata, pushdown automata and Turing machines. The automata are treated as language acceptors, and the expressiveness of the automata models are considered modulo language equivalence. This notion of equivalence is arguably too coarse to satisfactorily deal with a notion of interaction that is fundamental to contemporary computing. In this paper we therefore reconsider the automaton models from automata theory modulo branching bisimilarity, a well-known behavioral equivalence from process theory that has proved to be able to satisfactorily deal with interaction. We investigate to what extent some standard results from automata theory are still valid if branching bisimilarity is adopted as the preferred equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories of Communicating Processes). Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  2. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science 51, 129–176 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular expressions under bisimulation. Journal of the ACM 54(2), 1–28 (2007)

    Article  MathSciNet  Google Scholar 

  4. Baeten, J.C.M., Cuijpers, P.J.L., van Tilburg, P.J.A.: A context-free process as a pushdown automaton. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 98–113. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Basten, T.: Branching bisimilarity is an equivalence indeed!. Information Processing Letters 58(3), 141–147 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caucal, D.: On the transition graphs of Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 177–189. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

    Google Scholar 

  8. van Glabbeek, R.J.: What is Branching Time Semantics and why to use it?. Bulletin of the EATCS 53, 190–198 (1994)

    Google Scholar 

  9. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum I. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  10. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), 555–600 (1996)

    Article  MathSciNet  Google Scholar 

  11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Pearson, London (2006)

    Google Scholar 

  12. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  13. Moller, F.: Infinite results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)

    Google Scholar 

  14. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theoretical Computer Science 37, 51–75 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baeten, J.C.M., Cuijpers, P.J.L., Luttik, B., van Tilburg, P.J.A. (2010). A Process-Theoretic Look at Automata. In: Arbab, F., Sirjani, M. (eds) Fundamentals of Software Engineering. FSEN 2009. Lecture Notes in Computer Science, vol 5961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11623-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11623-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11622-3

  • Online ISBN: 978-3-642-11623-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics