Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 280))

Abstract

Modern video encoding systems employ block-based,multi-mode, spatio-temporal prediction methods in order to achieve high compression efficiency. A common practice is to transform, quantize and encode the difference between the prediction and the original along with the system parameters. Obviously, it’s crucial to design better prediction and residual encoding methods to obtain higher compression gains. In this work, we examine two such systems which utilize subsampled representations of the sequence and residual data. In the first system, we consider a method for reorganizing, downsampling and interpolating the residual data. In the second system, we propose a new method that employs lower resolution intensity values for spatial and motion-compensated prediction. Both of these methods are macroblock adaptive in the rate-distortion sense. Our experiments show that implementing these methods brings additional compression efficiency compared to the state-of-the-art video encoding standard H.264/AVC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barreto, D., Alvarez, L., Abad, J.: Motion estimation techniques in superresolution image reconstruction. A performance evaluation. Virtual Observatory 27, 433–436

    Google Scholar 

  2. Barreto, D., Alvarez, L., Molina, R., Katsaggelos, A., Callicó, G.: Region-based super-resolution for compression. Multidimensional Systems and Signal Processing 18(2), 59–81 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borman, S.: Topics in Multiframe Superresolution Restoration. Ph.D. thesis (2004)

    Google Scholar 

  4. Bosveld, F., Lagendijk, R., Biemond, J.: Hierarchical video coding using a spatio-temporal subbanddecomposition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP 1992, vol. 3 (1992)

    Google Scholar 

  5. Bruckstein, A., Elad, M., Kimmel, R.: Down-scaling for better transform compression. IEEE Transactions on Image Processing 12(9), 1132–1144 (2003)

    Article  MathSciNet  Google Scholar 

  6. Callicó, G., Núñez, A., Llopis, R., Sethuraman, R.: Low-Cost and Real-Time Super-Resolution over a Video Encoder IP. In: Fourth international symposium on quality electronic design (ISQED 2003), pp. 79–84 (2003)

    Google Scholar 

  7. CCITT S: Recommendation h. 261-video codec for audiovisual services at px64 kbit/s. Tech. rep., COM XV-R37-E, International Telecommunication Union (Augsust 1990)

    Google Scholar 

  8. Cheng, H., Kopansky, A., Isnardi, M.: Reduced resolution residual coding for h.264-based compression system. In: Proceedings of IEEE International Symposium on Circuits and Systems. ISCAS 2006 (May 2006)

    Google Scholar 

  9. Cheng, P., Li, J., Kuo, C., et al.: Multiscale video compression using wavelet transform and motion compensation. In: Proc. IEEE Int. Conf. Image Processing, pp. 606–609 (1995)

    Google Scholar 

  10. Draft I.: Recommendation H. 263, Video Coding for Low Bit Rate Communication. International Telecommunication Union (December 1995)

    Google Scholar 

  11. Draft I.: Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H. 264| ISO/IEC 14496-10 AVC), Geneva, Switzerland (May 2003)

    Google Scholar 

  12. Gandhi, P.: JPEG-based image compression for low-bit-rate coding. In: Proceedings of SPIE, vol. 2669, p. 82. SPIE (1996)

    Google Scholar 

  13. IEC I: 13818-1, Information Technology Generic Coding of Moving Pictures and Associated Audio Information: Systems, Part 1

    Google Scholar 

  14. IEC I: 14496-2, Information technology coding of audio-visual objects: visual. Committee Draft ISO/IEC JTC1/SC29/WGll, 2202

    Google Scholar 

  15. Molina, R., Katsaggelos, A., Alvarez, L., Mateos, J.: Toward a new video compression scheme using super-resolution. In: Proceedings of SPIE, vol. 6077, pp. 67–79 (2006)

    Google Scholar 

  16. Ohm, J.: Advances in Scalable Video Coding. Proceedings of the IEEE 93(1), 42–56 (2005)

    Article  Google Scholar 

  17. Otani, T.: Sharp presents industry’s first 4kx2k direct viewing lcd panel (October 2006)

    Google Scholar 

  18. Pennebaker, W., Mitchell, J.: JPEG Still Image Data Compression Standard. Kluwer Academic Publishers, Norwell (1992)

    Google Scholar 

  19. Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Signal Processing: Image Communication 17(1), 3–48 (2002)

    Article  Google Scholar 

  20. Schwarz, H., Marpe, D., Wiegand, T.: Overview of the Scalable Video Coding Extension of the H. 264/AVC Standard. IEEE Transactions on Circuits And Systems For Video Technology 17(9), 1103 (2007)

    Article  Google Scholar 

  21. Segall, C., Katsaggelos, A., Molina, R., Mateos, J.: Bayesian resolution enhancement of compressed video. IEEE Transactions on Image Processing 13(7), 898–911 (2004)

    Article  Google Scholar 

  22. Segall, C.A., Sullivan, G.J.: Spatial Scalability Within the H. 264/AVC Scalable Video Coding Extension. IEEE Transactions on Circuits and Systems For Video Technology 17(9), 1121 (2007)

    Article  Google Scholar 

  23. Vishwanath, M., Chou, P.: An efficient algorithm for hierarchical compression of video. In: Proceedings of IEEE International Conference on Image Processing. ICIP 1994, vol. 3 (1994)

    Google Scholar 

  24. Wallace, G.: The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics 38(1) (1992)

    Google Scholar 

  25. Wiegand, T., Sullivan, G., Bjntegaard, G., Luthra, A.: Overview of the H. 264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 560–576 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uslubas, S., Maani, E., Katsaggelos, A.K. (2010). A Resolution Adaptive Video Compression System. In: Chen, C.W., Li, Z., Lian, S. (eds) Intelligent Multimedia Communication: Techniques and Applications. Studies in Computational Intelligence, vol 280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11686-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11686-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11685-8

  • Online ISBN: 978-3-642-11686-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics