Skip to main content

Architecture and Representations

  • Chapter
Cognitive Systems

Introduction

The study of architectures to support intelligent behaviour is certainly the broadest, and arguably one of the most ill-defined enterprises in AI and Cognitive Science. The basic scientific question we seek to answer is: “What are the trade-offs between the different ways that intelligent systems might be structured?” These trade-offs depend in large part on what kinds of tasks and environment a system operates under (niche space), and also what aspects of the design space we deem to be architectural. In CoSy we have tried to answer that question in several ways. First, by thinking about the requirements on architectures that arise from our particular scenarios (parts of niche space). Second, by building systems that follow well-defined architectural rules, and using these systems to carry out experiments on variations of those rules. Third, by using the insights from system building to improve our understanding of the trade-offs between different architectural choices, i.e. between different partial designs. Our objective in CoSy has not been to come up with just another robot architecture, but instead to try to make some small steps forward in a new science of architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sloman, A., Scheutz, M.: A framework for comparing agent architectures. In: UK Workshop on Computational Intelligence, pp. 169–176 (2002)

    Google Scholar 

  2. Minsky, M., Singh, P., Sloman, A.: The st. thomas common sense symposium: Designing architectures for human-level intelligence. AI Magazine Summer (2004)

    Google Scholar 

  3. Arkin, R.C.: Behavior-Based Robotics. Intelligent robots and autonomous agents. MIT Press, Cambridge (1998)

    Google Scholar 

  4. Wolfe, J., Cave, K.: The psychophysical evidence for a binding problem in human vision. Neuron 24(1), 11–17 (1999)

    Article  Google Scholar 

  5. van der Velde, F., de Kamps, M.: Neural blackboard architectures of combinatorial structures in cognition. Behavioral and Brain Sciences 29, 37–70 (2006)

    Google Scholar 

  6. Shanahan, M.P., Baars, B.J.: Applying global workspace theory to the frame problem. Cognition 98(2), 157–176 (2005)

    Article  Google Scholar 

  7. Kruijff, G.-J.M., Kelleher, J.D., Hawes, N.: Information fusion for visual reference resolution in dynamic situated dialogue. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds.) PIT 2006. LNCS (LNAI), vol. 4021, pp. 117–128. Springer, Heidelberg (2006), http://www.cognitivesystems.org/cosybook/chap2.asp#Kruijff/etal:2006

    Chapter  Google Scholar 

  8. Jacobsson, H., Hawes, N., Kruijff, G.-J., Wyatt, J.: Crossmodal content binding in information-processing architectures. In: HRI 2008: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, pp. 81–88. ACM, New York (2008), http://www.cognitivesystems.org/cosybook/chap2.asp#Jacobsson/etal:2008a

    Chapter  Google Scholar 

  9. Harnad, S.: The symbol grounding problem. Physica D: Nonlinear Phenomena 42, 335–346 (1990)

    Article  Google Scholar 

  10. Skočaj, D., Kristan, M., Leonardis, A.: Continuous learning of simple visual concepts using incremental kernel density estimation. In: International Conference on Computer Vision Theory and Applications, Funchal, Madeira, Portugal, pp. 598–604 (2008), http://cognitivesystems.org/cosybook/chap2.asp#skocajVISAPP08

  11. Brenner, M., Hawes, N., Kelleher, J., Wyatt, J.: Mediating between qualitative and quantitative representations for task-orientated human-robot interaction. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2072–2077 (2007), http://www.cognitivesystems.org/cosybook/chap2.asp#Brenner/etal:2007

  12. Hawes, N., Sloman, A., Wyatt, J.: Towards an empirical exploration of design space. In: Kaminka, G.A., Burghart, C.R. (eds.) Evaluating Architectures for Intelligence: Papers from the 2007 AAAI Workshop, pp. 31–35. AAAI Press, Vancouver (2007), http://www.cognitivesystems.org/cosybook/chap2.asp#Hawes/etal:2007c

    Google Scholar 

  13. Hawes, N., Wyatt, J., Sloman, A.: Exploring design space for an integrated intelligent system. In: Bramer, M., Coenen, F., Petridis, M. (eds.) Research and Development in Intelligent Systems XXV: Proceedings of AI-2008, The Twenty-eighth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence. Springer, Cambridge (2008), http://www.cognitivesystems.org/publications/cosyBib2008.asp#Hawes/etal:2008

    Google Scholar 

  14. Hawes, N., Sloman, A., Wyatt, J., Zillich, M., Jacobsson, H., Kruijff, G.-J., Brenner, M., Berginc, G., Skočaj, D.: Towards an integrated robot with multiple cognitive functions. In: Holte, R.C., Howe, A. (eds.) Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 1548–1553. AAAI Press, Vancouver (2007), http://www.cognitivesystems.org/cosybook/chap2.asp#Hawes/etal:2007a

    Google Scholar 

  15. Lee, D.N.: The Optical Flow-field: The Foundation of Vision. Philosophical Transactions of the Royal Society London B 290, 169–179 (1980)

    Article  Google Scholar 

  16. Horswill, I.: Polly: A Vision-Based Artificial Agent. In: AAAI, pp. 824–829 (1993)

    Google Scholar 

  17. Land, M.F., Hayhoe, M.: In What Ways do Eye Movements Contribute to Everyday Activities. Vision Research 41, 3559–3565 (2001)

    Article  Google Scholar 

  18. Clouard, R., Elmoataz, A., Porquet, C., Revenu, M.: Borg: A knowledge-based system for automatic generation of image processing programs. PAMI 21

    Google Scholar 

  19. Thonnat, M., Moisan, S.: What can program supervision do for program reuse? In: IEE Proc. Software

    Google Scholar 

  20. Moisan, S.: Program supervision: Yakl and pegase+ reference and user manual, Rapport de Recherche 5066, INRIA, Sophia Antipolis, France (December 2003)

    Google Scholar 

  21. Li, L., Bulitko, V., Greiner, R., Levner, I.: Improving an Adaptive Image Interpretation System by Leveraging. In: Australian and New Zealand Conference on Intelligent Information Systems (2003)

    Google Scholar 

  22. Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent environments. In: International Symposium on Practical Cognitive Agents and Robots, Perth, Australia (2006), http://www.cognitivesystems.org/cosybook/chap6.asp#Brenner/etal:2006a

  23. Sridharan, M., Wyatt, J., Dearden, R.: HiPPo: Hierarchical POMDPs for Planning Information Processing and Sensing Actions on a Robot. In: International Conference on Automated Planning and Scheduling, ICAPS (2008), http://www.cognitivesystems.org/cosybook/chap2.asp#Sridharan/etal:2008a

  24. McDermott, D.: PDDL: The Planning Domain Definition Language, Technical Report TR-98-003/DCS TR-1165. Tech. Rep., Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  25. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic Search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

    MATH  Google Scholar 

  26. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence. Artificial Intelligence 33(3), 1–64 (1987)

    Article  Google Scholar 

  27. Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  28. Nilsson, N.: Shakey the robot, Tech. Rep. Tech. Note 323, AI Center, SRI International (April 1984)

    Google Scholar 

  29. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  30. Kirsch, D.: Today the earwig, tomorrow man? Artificial Intelligence 47, 161–184 (1991)

    Article  Google Scholar 

  31. Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots (1997)

    Google Scholar 

  32. Cheyer, A., Martin, D.: The Open Agent Architecture. Journal of Autonomous Agents and Multi-Agent Systems 4(1), 143–148 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hawes, N. et al. (2010). Architecture and Representations. In: Christensen, H.I., Kruijff, GJ.M., Wyatt, J.L. (eds) Cognitive Systems. Cognitive Systems Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11694-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11694-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11693-3

  • Online ISBN: 978-3-642-11694-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics