Introduction
The main topic of this chapter is learning, more specifically, multimodal learning.
In biological systems, learning occurs in various forms and at various developmental stages facilitating adaptation to the ever changing environment. Learning is also one of the most fundamental capabilities of an artificial cognitive system, thus significant efforts have been dedicated in CoSy to researching a variety of issues related to it.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fidler, S., Skočaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 337–350 (2006), http://cognitivesystems.org/CoSyBook/chap7.asp#fidlerPAMI06
Harnad, S.: The symbol grounding problem. Physica D: Nonlinear Phenomena 42, 335–346 (1990)
Ardizzone, E., Chella, A., Frixione, M., Gaglio, S.: Integrating subsymbolic and symbolic processing in artificial vision. Journal of Intelligent Systems 1(4), 273–308 (1992)
Chella, A., Frixione, M., Gaglio, S.: A cognitive architecture for artificial vision. Artificial Intelligence 89(1–2), 73–111 (1997)
Roy, D.K., Pentland, A.P.: Learning words from sights and sounds: a computational model. Cognitive Science 26(1), 113–146 (2002)
Roy, D.K.: Learning visually-grounded words and syntax for a scene description task. Computer Speech and Language 16(3), 353–385 (2002)
Steels, L., Vogt, P.: Grounding adaptive language games in robotic agents. In: Proceedings of the Fourth European Conference on Artificial Life, ECAL 1997, Complex Adaptive Systems, pp. 474–482 (1997)
Vogt, P.: The physical symbol grounding problem. Cognitive Systems Research 3(3), 429–457 (2002)
Bauckhage, C., Fink, G., Fritsch, J., Kummert, F., Lömker, F., Sagerer, G., Wachsmuth, S.: An integrated system for cooperative man-machine interaction. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 328–333 (2001)
Kirstein, S., Wersing, H., Körner, E.: Rapid online learning of objects in a biologically motivated recognition architecture. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 301–308. Springer, Heidelberg (2005)
Steels, L., Kaplan, F.: AIBO’s first words. the social learning of language and meaning. Evolution of Communication 4(1), 3–32 (2001)
Arsenio, A.: Developmental learning on a humanoid robot. In: IEEE International Joint Conference on Neural Networks, pp. 3167–3172 (2004)
Pollard, D.E.: A user’s guide to measure theoretic probability. Cambridge University Press, Cambridge (2002)
Kristan, M., Skočaj, D., Leonardis, A.: Online kernel density estimation for interactive learning (submitted for publication), http://cognitivesystems.org/CoSyBook/chap7.asp#KristanIMAVIS2008
Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall/CRC (1995)
Scott, D.W., Szewczyk, W.F.: From kernels to mixtures. Technometrics 43(3), 323–335 (2001)
Goldberger, J., Roweis, S.: Hierarchical clustering of a mixture model. In: Neural Inf. Proc. Systems, pp. 505–512 (2005)
Zhang, K., Kwok, J.T.: Simplifying mixture models through function approximation. In: Neural Inf. Proc. Systems (2006)
Mc Lachlan, G.J., Krishan, T.: The EM algorithm and extensions. Wiley, Chichester (1997)
Figueiredo, M.A.F., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Patter. Anal. Mach. Intell. 24(3), 381–396 (2002)
Živkovič, Z., van der Heijden, F.: Recursive unsupervised learning of finite mixture models. IEEE Trans. Patter. Anal. Mach. Intell. 26(5), 651–656 (2004)
Corduneanu, A., Bishop, C.M.: Variational Bayesian model selection for mixture distributions. In: Artificial Intelligence and Statistics, pp. 27–34. Morgan Kaufmann, Los Altos (2001)
McGrory, C.A., Titterington, D.M.: Variational approximations in Bayesian model selection for finite mixture distributions. Comput. Stat. Data Analysis 51(11), 5352–5367 (2007)
Song, M., Wang, H.: Highly efficient incremental estimation of gaussian mixture models for online data stream clustering. In: SPIE: Intelligent Computing: Theory and Applications, pp. 174–183 (2005)
Arandjelović, O., Cipolla, R.: Incremental learning of temporally-coherent gaussian mixture models. In: British Machine Vision Conference, pp. 759–768 (2005)
Szewczyk, W.F.: Time-evolving adaptive mixtures, Tech. rep., National Security Agency (2005)
Declercq, A., Piater, J.H.: Online learning of gaussian mixture models - a two-level approach. In: Intl.l Conf. Comp. Vis., Imaging and Comp. Graph. Theory and Applications, pp. 605–611 (2008)
Han, B., Comaniciu, D., Zhu, Y., Davis, L.S.: Sequential kernel density approximation and its application to real-time visual tracking. IEEE Trans. Patter. Anal. Mach. Intell. 30(7), 1186–1197 (2008)
Kristan, M., Skočaj, D., Leonardis, A.: Incremental learning with Gaussian mixture models. In: Computer Vision Winter Workshop CVWW 2008, Moravske toplice, Slovenia, pp. 25–32 (2008), http://cognitivesystems.org/CoSyBook/chap7.asp#kristanCVWW08
Girolami, M., He, C.: Probability density estimation from optimally condensed data samples. IEEE Trans. Patter. Anal. Mach. Intell. 25(10), 1253–1264 (2003)
Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density estimation. J. Amer. Stat. Assoc. 91(433), 401–407 (1996)
Skočaj, D., Berginc, G., Ridge, B., Štimec, A., Jogan, M., Vanek, O., Leonardis, A., Hutter, M., Hewes, N.: A system for continuous learning of visual concepts. In: International Conference on Computer Vision Systems ICVS 2007, Bielefeld, Germany (2007), http://cognitivesystems.org/CoSyBook/chap7.asp#skocajICVS07
Skočaj, D., Ridge, B., Berginc, G., Leonardis, A.: A framework for continuous learning of simple visual concepts. In: Computer Vision Winter Workshop 2007, St. Lambrecht, Austria, pp. 99–105 (2007), http://cognitivesystems.org/CoSyBook/chap7.asp#skocajCVWW07
Skočaj, D., Kristan, M., Leonardis, A.: Continuous learning of simple visual concepts using incremental kernel density estimation. In: International Conference on Computer Vision Theory and Applications, Funchal, Madeira, Portugal, pp. 598–604 (2008), http://cognitivesystems.org/CoSyBook/chap7.asp#skocajVISAPP08
Lowe, D.: Object recognition from local scale invariant features. In: ICCV 1999 (1999)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: CVPR 2003 (2003)
Mikolajczyk, K., Leibe, B., Schiele, B.: Local features for object class recognition. In: ICCV 2005, Beijing, China (2005)
Csurka, G., Dance, C., Fan, L., Willarnowski, J., Bray, C.: Visual categorization with bags of keypoints. In: SLCV (2004)
Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: CVPR 2005, San Diego, CA, USA (2005)
Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their locations in images. In: ICCV 2005, Beijing, China (2005)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR 2006, pp. 2169–2178 (2006)
Agarwal, A., Triggs, B.: Hyperfeatures - multilevel local coding for visual recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 30–43. Springer, Heidelberg (2006)
Fritz, M., Schiele, B.: Towards unsupervised discovery of visual categories. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 232–241. Springer, Heidelberg (2006)
Grauman, K., Darrell, T.: Unsupervised learning of categories from sets of partially matching image features. In: CVPR 2006, pp. 19–25. IEEE Computer Society, Washington (2006)
Baldridge, J., Kruijff, G.-J.M.: Multi-modal combinatory categorial grammar. In: EACL 2003, Morristown, NJ, USA (2003)
Baldridge, J., Kruijff, G.-J.M.: Coupling ccg and hybrid logic dependency semantics. In: ACL 2002, Morristown, NJ, USA (2001)
Roy, D.: Learning words and syntax for a scene description task. Computer Speech and Language 16(3)
Kruijff, G.-J.M., Kelleher, J.D., Berginc, G., Leonardis, A.: Structural descriptions in Human-Assisted robot visual learning. In: Proceedings of 1st Annual Conference on Human-Robot Interaction (2006)
Kruijff, G.-J.M., Kelleher, J.D., Hawes, N.: Information fusion for visual reference resolution in dynamic situated dialogue. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds.) PIT 2006. LNCS (LNAI), vol. 4021, pp. 117–128. Springer, Heidelberg (2006)
Kelleher, J., Kruijff, G.-J., Costello, F.: Proximity in context: an empirically grounded computational model of proximity for processing topological spatial expression. In: Coling-ACL 2006, Sydney Australia (2006)
Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex action recognition. In: IEEE Proceedings of Computer Vision and Pattern Recognition, Puerto Rico, USA (1997)
Wren, C., Pentland, A.: Dynamic modeling of human motion. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan (1998)
Hongeng, S., Wyatt, J.: Learning causality and intention in human actions. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, Genoa, France (2006), http://cognitivesystems.org/CoSyBook/chap7.asp#hong06
Sutton, R.S., Barto, A.G.: Reinforcement learning : An introduction. MIT Press, Cambridge (1998)
Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational learning. In: Proceedings of the ICML 2004 Workshop on Statistical Relational Learning and its Connection to Other Fields, Banff, Canada (2004)
Hongeng, S., Wyatt, J.: Learning Causality and Intentional Actions. In: Rome, E., Hertzberg, J., Dorffner, G. (eds.) Towards Affordance-Based Robot Control. LNCS (LNAI), vol. 4760, pp. 27–46. Springer, Heidelberg (2008), http://cognitivesystems.org/CoSyBook/chap7.asp#hong08a
Hongeng, S., Wyatt, J.: Learning goal-based motion sequences of object manipulation, Tech. Rep. CSR-08-02, School of Computer Science, University of Birmingham (2008)
Glymour, C.: Learning causes : Psychological explanations of causal explanation. Minds and Machines 8, 39–60 (1998)
Gergely, G., Csibra, G.: Teleological reasoning in infancy: the naive theory of rational action. Trends in Cognitive Sciences 7(7), 287–292 (2003)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results (2007)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset, Tech. Rep. 7694, California Institute of Technology (2007)
Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., Braem, P.B.: Basic objects in natural categories. Cognitive Psychology
Gibson, J.J.: The theory of affordance, in: Percieving, Acting, and Knowing. Lawrence Erlbaum Associates, Hillsdale (1977)
Winston, P.H., Katz, B., Binford, T.O., Lowry, M.R.: Learning physical descriptions from functional definitions, examples, and precedents. In: AAAI 1983 (1983)
Stark, L., Bowyer, K.: Achieving generalized object recognition through reasoning about association of function to structure. PAMI 13(10), 1097–1104 (1991)
Stark, L., Hoover, A., Goldgof, D., Bowyer, K.: Function-based recognition from incomplete knowledge of shape. In: WQV 1993, pp. 11–22 (1993)
Rivlin, E., Dickinson, S.J., Rosenfeld, A.: Recognition by functional parts. Computer Vision and Image Understanding: CVIU 62(2), 164–176 (1995)
Bogoni, L., Bajcsy, R.: Interactive recognition and representation of functionality. CVIU 62(2), 194–214 (1995)
Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. IJRR
Stark, M., Lies, P., Zillich, M., Wyatt, J., Schiele, B.: Functional object class detection based on learned affordance cues. In: 6th International Conference on Computer Vision Systems, ICVS (2008), http://cognitivesystems.org/CoSyBook/chap7.asp#stark08icvs
Sun, J., Zhang, W.W., Tang, X., Shum, H.Y.: Background cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML 2001 (2001)
Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. In: CVPR, pp. 1274–1280. IEEE Computer Society, Los Alamitos (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.J.V.: A comparison of affine region detectors. In: IJCV 2005 (2005)
Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection, Rapport De Recherche Inria
Ferrari, V., Tuytelaars, T., Gool, L.J.V.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)
Stark, M., Schiele, B.: How good are local features for classes of geometric objects. In: ICCV (2007), http://cognitivesystems.org/CoSyBook/chap7.asp#stark07iccv
Zillich, M.: Incremental Indexing for Parameter-Free Perceptual Grouping. In: 31st Workshop of the Austrian Association for Pattern Recognition (2007)
Leibe, B., Leonardis, A., Schiele, B.: An implicit shape model for combined object categorization and segmentation. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 508–524. Springer, Heidelberg (2006), http://cognitivesystems.org/CoSyBook/chap7.asp#Leibe06b
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Skočaj, D. et al. (2010). Multi-modal Learning. In: Christensen, H.I., Kruijff, GJ.M., Wyatt, J.L. (eds) Cognitive Systems. Cognitive Systems Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11694-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-11694-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11693-3
Online ISBN: 978-3-642-11694-0
eBook Packages: EngineeringEngineering (R0)