Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5945))

  • 577 Accesses

Abstract

We present the attributed π− calculus for modeling concurrent systems with interaction constraints depending on the values of attributes of processes. The λ-calculus serves as a constraint language underlying the π− calculus. Interaction constraints subsume priorities, by which to express global aspects of populations. We present a non-deterministic and a stochastic semantics for the attributed π− calculus. We show how to encode the π− calculus with priorities and polyadic synchronization π− @ and thus dynamic compartments, as well as the stochastic π− calculus with concurrent objects spico.

We illustrate the usefulness of the attributed π− calculus for modeling biological systems at two particular examples: Euglena’s spatial movement in phototaxis, and cooperative protein binding in gene regulation of bacteriophage lambda. Furthermore, population-based model is supported beside individual-based modeling. A stochastic simulation algorithm for the attributed π− calculus is derived from its stochastic semantics. We have implemented a simulator and present experimental results, that confirm the practical relevance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of 20th IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, June 26-29, pp. 239–248. IEEE Comp. Soc. Press, Los Alamitos (2005)

    Google Scholar 

  2. Cardelli, L.: On process rate semantics. Theoretical Computer Science 391, 190–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chabrier-Rivier, N., Fages, F., Soliman, S.: The Biochemical Abstract Machine BIOCHAM. In: Computational Methods in Systems Biology, pp. 172–191 (2004)

    Google Scholar 

  4. Regev, A.: Computational Systems Biology: A Calculus for Biomolecular Knowledge. Tel Aviv University, PhD thesis (2003)

    Google Scholar 

  5. Regev, A., Shapiro, E.: Cells as Computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  6. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Rule-Based Modeling of Biochemical Networks. Complexity 10, 22–41 (2005)

    Article  MathSciNet  Google Scholar 

  9. Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. In: 24th Conference on the Mathematical Foundations of Programming Semantics. Electronical notes in theoretical computer science, vol. 218, pp. 73–96. Elsevier, Amsterdam (2008)

    Google Scholar 

  10. Kuttler, C., Lhoussaine, C., Niehren, J.: A stochastic pi calculus for concurrent objects. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 232–246. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a Stochastic Name-Passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters 80, 25–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. TCS 325, 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Ciocchetta, F., Hillston, J.: Bio-PEPA: An Extension of the Process Algebra PEPA for Biochemical Networks. ENTCS 194, 103–117 (2008)

    MATH  Google Scholar 

  16. Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic concurrent constraint programming. Constraints, an International Journal 13, 66–90 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in pi-calculus. Nordic Journal of Computing 10, 70–98 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Versari, C.: A Core Calculus for a Comparative Analysis of Bio-inspired Calculi. In: Programming Languages and Systems, pp. 411–425 (2007)

    Google Scholar 

  19. Priami, C.: Stochastic π-calculus. Computer Journal 6, 578–589 (1995)

    Article  Google Scholar 

  20. Kuttler, C., Lhoussaine, C., Niehren, J.: A stochastic pi calculus for concurrent objects. In: 1st International Workshop on Probabilistic Automata and Logics (2006)

    Google Scholar 

  21. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Proceedings of BioConcur 2004 (2004)

    Google Scholar 

  22. Versari, C., Busi, N.: Stochastic simulation of biological systems with dynamical compartment structure. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 80–95. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Jaffar, J., Lassez, J.L.: Constraint Logic Programming. In: POPL 1987: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 111–119. ACM, New York (1987)

    Google Scholar 

  24. Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: ACM SICPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 232–245. ACM Press, New York (1990)

    Google Scholar 

  25. John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.: The attributed pi calculus. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 83–102. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Kuttler, C., Niehren, J.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. Transactions on Computational Systems Biology, 24–55 (2006)

    Google Scholar 

  27. Kuttler, C.: Modeling Bacterial Gene Expression in a Stochastic Pi Calculus with Concurrent Objects. PhD thesis, Université des Sciences et Technologies de Lille - Lille 1 (2007)

    Google Scholar 

  28. Versari, C.: A Core Calculus for the Analysis and Implementation of Biologically Inspired Languages. PhD thesis, University of Bologna (2009)

    Google Scholar 

  29. Himmelspach, J., Uhrmacher, A.M.: Plug’n Simulate. In: ANSS 2007: Proceedings of the 40th Annual Simulation Symposium, Washington, DC, USA, pp. 137–143. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  30. Baldamus, M., Parrow, J., Victor, B.: A fully abstract encoding of the pi-calculus with data terms. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1202–1213. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Johansson, M., Parrow, J., Victor, B., Bengtson, J.: Extended pi-calculi. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 87–98. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Guerriero, M.L., Priami, C., Romanel, A.: Modeling static biological compartments with beta-binders. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 247–261. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Priami, C., Quaglia, P., Romanel, A.: Blenx static and dynamic semantics. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 37–52. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. Maurin, M., Magnin, M., Roux, O.H.: Modeling of genetic regulatory network in stochastic pi-calculus. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS (LNBI), vol. 5462, pp. 282–294. Springer, Heidelberg (2009)

    Google Scholar 

  35. Lecca, P.: Stochastic pi-calculus models of the molecular bases of parkinson’s disease. In: International Conference on Bioinformatics and Computational Biology, pp. 298–304 (2008)

    Google Scholar 

  36. Niehren, J.: Uniform confluence in concurrent computation. Journal of Functional Programming 10, 453–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huet, G.P.: Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of the ACM 27, 797–821 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuttler, C., Lhoussaine, C., Nebut, M.: Rule-based modeling of transcriptional attenuation at the tryptophan operon. In: Transactions on Computational Systems Biology (2009)

    Google Scholar 

  39. Tait, W.W.: Intensional interpretations of functionals of finite type i. Journal of Symbolic Logic 32, 198–212 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge (1996)

    Google Scholar 

  41. John, M., Ewald, R., Uhrmacher, A.M.: A Spatial Extension to the Pi Calculus. ENTCS 194, 133–148 (2008)

    MATH  Google Scholar 

  42. Kholodenko, B.N.: Cell-Signalling Dynamics in Time and Space. Nature Reviews Molecular Cell Biology 7, 165–176 (2006)

    Article  Google Scholar 

  43. Grell, K.G.: Protozoologie. Springer, Heidelberg (1968)

    Book  Google Scholar 

  44. John, M., Lhoussaine, C., Niehren, J.: Dynamic compartments in the imperative pi calculus. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS (LNBI), vol. 5688, pp. 235–250. Springer, Heidelberg (2009)

    Google Scholar 

  45. Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. Journal of Computational Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  46. Khomenko, V., Meyer, R.: Checking pi-calculus structural congruence is graph isomorphism complete. Technical Report CS-TR: 1100, School of Computing Science, Newcastle University, 20 pages (2008)

    Google Scholar 

  47. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)

    Article  Google Scholar 

  48. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104, 1876–1889 (2000)

    Article  Google Scholar 

  49. Pozo, R., Miller, B.: SciMark 2.0 (2009), http://math.nist.gov/scimark2/

  50. Degenring, D., Roehl, M., Uhrmacher, A.: Discrete event, multi-level simulation of metabolite channeling. BioSystems 1-3, 29–41 (2004)

    Article  Google Scholar 

  51. Mazemondet, O., John, M., Maus, C., Uhrmacher, A.M., Rolfs, A.: Integrating diverse reaction types into stochastic models - a signaling pathway case study in the imperative pi-calculus. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., Ingalls, R.G. (eds.) Proceedings of the Winter Simulation Conference (to appear)

    Google Scholar 

  52. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M. (2010). The Attributed Pi-Calculus with Priorities. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds) Transactions on Computational Systems Biology XII. Lecture Notes in Computer Science(), vol 5945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11712-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11712-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11711-4

  • Online ISBN: 978-3-642-11712-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics