Abstract
We present the attributed π− calculus for modeling concurrent systems with interaction constraints depending on the values of attributes of processes. The λ-calculus serves as a constraint language underlying the π− calculus. Interaction constraints subsume priorities, by which to express global aspects of populations. We present a non-deterministic and a stochastic semantics for the attributed π− calculus. We show how to encode the π− calculus with priorities and polyadic synchronization π− @ and thus dynamic compartments, as well as the stochastic π− calculus with concurrent objects spico.
We illustrate the usefulness of the attributed π− calculus for modeling biological systems at two particular examples: Euglena’s spatial movement in phototaxis, and cooperative protein binding in gene regulation of bacteriophage lambda. Furthermore, population-based model is supported beside individual-based modeling. A stochastic simulation algorithm for the attributed π− calculus is derived from its stochastic semantics. We have implemented a simulator and present experimental results, that confirm the practical relevance of our approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of 20th IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, June 26-29, pp. 239–248. IEEE Comp. Soc. Press, Los Alamitos (2005)
Cardelli, L.: On process rate semantics. Theoretical Computer Science 391, 190–215 (2008)
Chabrier-Rivier, N., Fages, F., Soliman, S.: The Biochemical Abstract Machine BIOCHAM. In: Computational Methods in Systems Biology, pp. 172–191 (2004)
Regev, A.: Computational Systems Biology: A Calculus for Biomolecular Knowledge. Tel Aviv University, PhD thesis (2003)
Regev, A., Shapiro, E.: Cells as Computation. Nature 419, 343 (2002)
Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)
Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)
Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Rule-Based Modeling of Biochemical Networks. Complexity 10, 22–41 (2005)
Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. In: 24th Conference on the Mathematical Foundations of Programming Semantics. Electronical notes in theoretical computer science, vol. 218, pp. 73–96. Elsevier, Amsterdam (2008)
Kuttler, C., Lhoussaine, C., Niehren, J.: A stochastic pi calculus for concurrent objects. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 232–246. Springer, Heidelberg (2007)
Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)
Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a Stochastic Name-Passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters 80, 25–31 (2001)
Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. TCS 325, 141–167 (2004)
Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)
Ciocchetta, F., Hillston, J.: Bio-PEPA: An Extension of the Process Algebra PEPA for Biochemical Networks. ENTCS 194, 103–117 (2008)
Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic concurrent constraint programming. Constraints, an International Journal 13, 66–90 (2008)
Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in pi-calculus. Nordic Journal of Computing 10, 70–98 (2003)
Versari, C.: A Core Calculus for a Comparative Analysis of Bio-inspired Calculi. In: Programming Languages and Systems, pp. 411–425 (2007)
Priami, C.: Stochastic π-calculus. Computer Journal 6, 578–589 (1995)
Kuttler, C., Lhoussaine, C., Niehren, J.: A stochastic pi calculus for concurrent objects. In: 1st International Workshop on Probabilistic Automata and Logics (2006)
Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Proceedings of BioConcur 2004 (2004)
Versari, C., Busi, N.: Stochastic simulation of biological systems with dynamical compartment structure. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 80–95. Springer, Heidelberg (2007)
Jaffar, J., Lassez, J.L.: Constraint Logic Programming. In: POPL 1987: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 111–119. ACM, New York (1987)
Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: ACM SICPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 232–245. ACM Press, New York (1990)
John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.: The attributed pi calculus. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 83–102. Springer, Heidelberg (2008)
Kuttler, C., Niehren, J.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. Transactions on Computational Systems Biology, 24–55 (2006)
Kuttler, C.: Modeling Bacterial Gene Expression in a Stochastic Pi Calculus with Concurrent Objects. PhD thesis, Université des Sciences et Technologies de Lille - Lille 1 (2007)
Versari, C.: A Core Calculus for the Analysis and Implementation of Biologically Inspired Languages. PhD thesis, University of Bologna (2009)
Himmelspach, J., Uhrmacher, A.M.: Plug’n Simulate. In: ANSS 2007: Proceedings of the 40th Annual Simulation Symposium, Washington, DC, USA, pp. 137–143. IEEE Computer Society, Los Alamitos (2007)
Baldamus, M., Parrow, J., Victor, B.: A fully abstract encoding of the pi-calculus with data terms. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1202–1213. Springer, Heidelberg (2005)
Johansson, M., Parrow, J., Victor, B., Bengtson, J.: Extended pi-calculi. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 87–98. Springer, Heidelberg (2008)
Guerriero, M.L., Priami, C., Romanel, A.: Modeling static biological compartments with beta-binders. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 247–261. Springer, Heidelberg (2007)
Priami, C., Quaglia, P., Romanel, A.: Blenx static and dynamic semantics. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 37–52. Springer, Heidelberg (2009)
Maurin, M., Magnin, M., Roux, O.H.: Modeling of genetic regulatory network in stochastic pi-calculus. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS (LNBI), vol. 5462, pp. 282–294. Springer, Heidelberg (2009)
Lecca, P.: Stochastic pi-calculus models of the molecular bases of parkinson’s disease. In: International Conference on Bioinformatics and Computational Biology, pp. 298–304 (2008)
Niehren, J.: Uniform confluence in concurrent computation. Journal of Functional Programming 10, 453–499 (2000)
Huet, G.P.: Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of the ACM 27, 797–821 (1980)
Kuttler, C., Lhoussaine, C., Nebut, M.: Rule-based modeling of transcriptional attenuation at the tryptophan operon. In: Transactions on Computational Systems Biology (2009)
Tait, W.W.: Intensional interpretations of functionals of finite type i. Journal of Symbolic Logic 32, 198–212 (1967)
Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge (1996)
John, M., Ewald, R., Uhrmacher, A.M.: A Spatial Extension to the Pi Calculus. ENTCS 194, 133–148 (2008)
Kholodenko, B.N.: Cell-Signalling Dynamics in Time and Space. Nature Reviews Molecular Cell Biology 7, 165–176 (2006)
Grell, K.G.: Protozoologie. Springer, Heidelberg (1968)
John, M., Lhoussaine, C., Niehren, J.: Dynamic compartments in the imperative pi calculus. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS (LNBI), vol. 5688, pp. 235–250. Springer, Heidelberg (2009)
Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. Journal of Computational Physics 22, 403–434 (1976)
Khomenko, V., Meyer, R.: Checking pi-calculus structural congruence is graph isomorphism complete. Technical Report CS-TR: 1100, School of Computing Science, Newcastle University, 20 pages (2008)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)
Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104, 1876–1889 (2000)
Pozo, R., Miller, B.: SciMark 2.0 (2009), http://math.nist.gov/scimark2/
Degenring, D., Roehl, M., Uhrmacher, A.: Discrete event, multi-level simulation of metabolite channeling. BioSystems 1-3, 29–41 (2004)
Mazemondet, O., John, M., Maus, C., Uhrmacher, A.M., Rolfs, A.: Integrating diverse reaction types into stochastic models - a signaling pathway case study in the imperative pi-calculus. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., Ingalls, R.G. (eds.) Proceedings of the Winter Simulation Conference (to appear)
Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M. (2010). The Attributed Pi-Calculus with Priorities. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds) Transactions on Computational Systems Biology XII. Lecture Notes in Computer Science(), vol 5945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11712-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-11712-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11711-4
Online ISBN: 978-3-642-11712-1
eBook Packages: Computer ScienceComputer Science (R0)