Skip to main content

A Language for Biochemical Systems: Design and Formal Specification

  • Chapter
Transactions on Computational Systems Biology XII

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5945))

  • 566 Accesses

Abstract

This paper introduces a Language for Biochemical Systems (LBS) which combines rule-based approaches to modelling with modularity. It is based on the Calculus of Biochemical Systems (CBS) which affords modular descriptions of metabolic, signalling and regulatory networks in terms of reactions between modified complexes, occurring concurrently inside a hierarchy of compartments and with possible cross-compartment interactions and transport. Additional features of LBS, targeted towards practical and large-scale applications, include species expressions for manipulating large complexes in a concise manner, parameterised modules with a notion of subtyping for writing reusable modules, and nondeterminism for handling combinatorial explosion. These features are demonstrated through examples. A formal specification of LBS is then given through an abstract syntax and a general semantics which is parametric on a structure pertaining to the specific choice of target semantical objects. Examples of such structures for the specific cases of Petri nets, coloured Petri nets, ODEs and continuous time Markov chains are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blanchard, P., Devaney, R.L., Hall, G.R.: Differential Equations. Brooks/Cole (2002)

    Google Scholar 

  2. Cai, Y., Hartnett, B., Gustafsson, C., Peccoud, J.: A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics 23(20), 2760–2767 (2007)

    Article  Google Scholar 

  3. Cai, Y., Lux, M.W., Adam, L., Peccoud, J.: Modeling structure-function relationships in synthetic DNA sequences using attribute grammars. PLoS Comput. Biol. 5(10), e1000529 (2009)

    Article  MathSciNet  Google Scholar 

  4. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. Trans. on Comput. Syst. Biol. VII 4230, 1–23 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cardelli, L.: Brane calculi. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine BIOCHAM. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol. 5(239) (2009)

    Google Scholar 

  8. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA for biochemical networks. Electron. Notes Theor. Comput. Sci. 194(3), 103–117 (2008)

    Article  MATH  Google Scholar 

  9. Danos, V.: Agile modelling of cellular signalling. In: Computation in Modern Science and Engineering, vol. 2, Part A 963, pp. 611–614 (2007)

    Google Scholar 

  10. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling and model perturbation. TCSB 5750(11), 116–137 (2009)

    MATH  Google Scholar 

  11. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Dematté, L., Priami, C., Romanel, A.: Modelling and simulation of biological processes in BlenX. SIGMETRICS Performance Evaluation Review 35(4), 32–39 (2008)

    Article  MATH  Google Scholar 

  13. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Graphical rule-based representation of signal-transduction networks. In: Liebrock, L.M. (ed.) Proc. 2005 ACM Symp. Appl. Computing, pp. 133–140. ACM Press, New York (2005)

    Chapter  Google Scholar 

  14. Guerriero, M.L., Heath, J.K., Priami, C.: An automated translation from a narrative language for biological modelling into process algebra. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 136–151. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  18. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  19. Kofahl, B., Klipp, E.: Modelling the dynamics of the yeast pheromone pathway. Yeast 21(10), 831–850 (2004)

    Article  Google Scholar 

  20. Kwiatkowski, M., Stark, I.: The continuous Ï€-calculus: a process algebra for biochemical modelling. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 103–122. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Le Novère, N., et al.: The systems biology graphical notation. Nature Biotechnology 27, 735–741 (2009)

    Article  Google Scholar 

  22. Mallavarapu, A., Thomson, M., Ullian, B., Gunawardena, J.: Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface (2008)

    Google Scholar 

  23. Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  24. Paun, G., Rozenberg, G.: A guide to membrane computing. Theor. Comput. Sci. 287(1), 73–100 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pedersen, M.: Compositional definitions of minimal flows in Petri nets. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 288–307. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface special issue (2009)

    Google Scholar 

  27. Pedersen, M., Plotkin, G.: A Language for Biochemical Systems. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 63–82. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Peyssonnaux, C., Eychène, A.: The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell. 93(1-2), 53–62 (2001)

    Article  Google Scholar 

  29. Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological processes in the stochastic pi-calculus. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 123–152. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  31. Plotkin, G.: A calculus of biochemical systems (in preparation)

    Google Scholar 

  32. Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)

    Article  Google Scholar 

  33. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Regev, A., Paninab, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Smith, L.P., Bergmann, F.T., Chandran, D., Sauro, H.M.: Antimony: a modular model definition language. Bioinformatics 25(18), 2452–2454 (2009)

    Article  Google Scholar 

  36. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pedersen, M., Plotkin, G.D. (2010). A Language for Biochemical Systems: Design and Formal Specification. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds) Transactions on Computational Systems Biology XII. Lecture Notes in Computer Science(), vol 5945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11712-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11712-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11711-4

  • Online ISBN: 978-3-642-11712-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics