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Abstract. This paper introduces a Language for Biochemical Systems
(LBS) which combines rule-based approaches to modelling with modu-
larity. It is based on the Calculus of Biochemical Systems (CBS) which af-
fords modular descriptions of metabolic, signalling and regulatory
networks in terms of reactions between modified complexes, occurring
concurrently inside a hierarchy of compartments and with possible cross-
compartment interactions and transport. Additional features of LBS,
targeted towards practical and large-scale applications, include species
expressions for manipulating large complexes in a concise manner, pa-
rameterised modules with a notion of subtyping for writing reusable mod-
ules, and nondeterminism for handling combinatorial explosion. These
features are demonstrated through examples. A formal specification of
LBS is then given through an abstract syntax and a general semantics
which is parametric on a structure pertaining to the specific choice of tar-
get semantical objects. Examples of such structures for the specific cases
of Petri nets, coloured Petri nets, ODEs and continuous time Markov
chains are also given.

Keywords: Large-scale, parametrised modules, subtyping, combinato-
rial explosion, nondeterminism, Petri nets, coloured Petri nets, ordinary
differential equations, continuous time Markov chains.

1 Introduction

Systems biology. Systems biology is a rapidly growing field which seeks a
refined and quantitative understanding of organisms, particularly studying how
molecular species such as metabolites, proteins and genes interact in cells to
form the complex emerging behaviour that living systems exhibit. Such an un-
derstanding is for example important for the development of new drugs and to
predict the impact of these on an organism. Mathematical modelling plays a key
rôle in pursuit of this by facilitating the generation of new knowledge through
the cycle of simulation, experimental validation, and model refinement.

Formalisms for systems biology. As our biological knowledge-base increases
through rapid improvements of e.g. high-throughput sequencing methods, the
models under study also increase in size and complexity. New methods are there-
fore needed to support the structured development of large models, and also to

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. XII, LNBI 5945, pp. 77–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



78 M. Pedersen and G.D. Plotkin

complement simulations with other kinds of analysis. Hence an abundance of
formalisms inspired by computer science have been applied to biological mod-
elling over the past decade. These include Petri nets [23] and coloured Petri
nets [18]; process calculi such as the stochastic π-calculus [32, 29], the continu-
ous π-calculus [20], Beta binders [33,14], BlenX [12], PEPA [4] and BioPEPA [8];
rule-based languages such as κ [11,10], BioNetGen [13] and BIOCHAM [6]; state-
based formalisms such as Statecharts [15]; and more specialised languages such
as Bioambients [34], the Brane calculi [5] and P-systems [24] aimed specifically
at describing biological compartments and membranes.

Contributions. Some of the above mentioned languages, in particular those
from the process calculus family, excel in their support for modularity by allowing
large systems to be described in terms of their components. These languages
may be difficult for non-specialists, including some biologists, to use and to
understand. Other languages, for example from the rule-based family, are more
intuitive to use but only allow flat, non-modular descriptions. The contribution of
this paper is a Language for Biochemical Systems (LBS) which aims at bridging
the above gap: it is based on a notion of reaction rules while also being modular.

LBS builds on the Calculus of Biochemical Systems (CBS) [31]. Just as CBS,
LBS affords modular descriptions of metabolic, signalling and regulatory net-
works in terms of reactions between modified complexes, occurring concurrently
inside a hierarchy of compartments and with possible cross-compartment inter-
actions and transport. It has a compositional semantics, translating programs
into semantical objects such as Petri nets, coloured Petri nets, ordinary differ-
ential equations (ODEs) and continuous time Markov chains (CTMCs). Petri
nets allow a range of established analysis techniques to be used in the biologi-
cal setting [16], while ODEs and CTMCs enable respectively deterministic and
stochastic simulations to be carried out. The compositional semantics of LBS
can be exploited in analysis, as previously demonstrated for the case of Petri
net flows [25], potentially improving analysis efficiency and enabling the reuse
of analysis results.

LBS, unlike CBS, includes support for practical, large-scale applications
through three main features, namely: species expressions, parameterised modules
and nondeterminism. Species expressions provide a concise way of constructing
large complexes and modifying these incrementally, a common scenario in signal
transduction pathways. Parameterised modules allow common motifs such as
phosphorylation/dephosphorylation cycles or entire MAPK cascades to be mod-
elled once and reused in different contexts. Modules may be parameterised on
compartments, rates, and species; species are typed by their component atomic
species names and their modification site types; and the typing system includes
subtyping and a notion of parametric type. Modules may furthermore output
species, thus providing a natural mechanism for connecting related modules.
Nondeterminism provides a mechanism for specifying that any one of a given set
of species can take place in a reaction, thus going some way towards compact
descriptions of combinatorially complex systems.
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LBS further includes species and compartment definitions which involve scope
and new name generation, and complex species which may span several com-
partments. LBS also allows arbitrary modification site types for representing
e.g. spatial location (real number pairs) or DNA sequences (strings). A suitable
choice of modification site type can furthermore capture connectivity in complex
species which we anticipate can lead to a translation of LBS to κ and BioNet-
Gen. Finally, LBS allows both mass-action rates and general rate expressions
in reactions, and also provides a means of model variation so that a single LBS
program may translate to multiple related semantical objects which differ in e.g.
their initial conditions.

A compiler from LBS to the Systems Biology Markup Language (SBML) [17]
has been implemented, allowing existing SBML-compliant tools for simulation
and analysis to be exploited; modular compilations to e.g. ODEs are left for
future work. The compiler has been validated on a model of the yeast pheromone
pathway [19] for which simulation results coincide with published results.

There are two other recently introduced languages which combine the reaction-
based approach with modularity, namely Little b [22] and Antimony [35]. Little
b is based on Lisp and thus boasts the full power of modularity found in this
general-purpose functional programming language. Antimony follows an object-
oriented approach rather than the more functional approach of LBS; it also has
dedicated features for the composition of genes aimed at applications in synthetic
biology. To our knowledge, neither of these languages has a direct counterpart of
the LBS species expressions, nondeterminism and subtyping. Furthermore, they
do not have a formally defined semantics (barring the standard semantics of Lisp
which is not particularly well suited for the biological domain), let alone a com-
positional one, and are hence not directly amenable to modular analysis.

Paper outline. We start in Section 2 with an informal overview of CBS through
basic examples of gene expression and MAPK cascades. In Section 3 we introduce
LBS by further examples and demonstrate how specific limitations of CBS can
be overcome. We then turn to a formal presentation, starting with an abstract
syntax of LBS in Section 4. A general semantics, parameterised on a structure
pertaining to specific semantical objects, is given in Section 5. Examples of such
structures for translating to Petri nets, coloured Petri nets, ODEs and CTMCs
are given in Section 6. Section 7 concludes with a discussion of future directions.

The present version of LBS is a wholesale redesign of a previous version [27],
merging patterns and species into one syntactic category with consequent ex-
tensive changes to the typing system, and with a number of extensions such as
species nondeterminism and model variation.

2 The Calculus of Biochemical Systems

2.1 Located Parallel Reactions

As a first example we consider a basic model of eukaryotic gene expression as
illustrated by the informal pictorial diagram in Figure 2.1. A corresponding
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Listing 2.1. A CBS program for gene expression.!
1 c [
2 n [ gene + rnap −> gene + rnap + mrna ] |
3 n [ mrna ] −> mrna |
4 mrna −> prot
5 ] "
CBS program is shown in Listing 2.1. The program consists of three reactions
composed in parallel using the operator |, and taking place inside a cytosol com-
partment c. The first reaction models transcription. It is located inside a nested
nucleus compartment n and produces mRNA from a gene and an RNA poly-
merase. The second reaction models transport of mRNA out of the nucleus into
the enclosing cytosol compartment, and the third reaction models translation
of mRNA into protein. Compartments can thus be used at the level of individ-
ual species and at the level of entire programs. In this example we could have
omitted the cytosol compartment in which case a default top level compartment
would be assumed. Reactants and products can be labelled with stoichiometry,
but when omitted, as in this example, a default of 1 is assumed.

As an illustration of the underlying formal semantics, the Petri nets arising
from each of the three individual (but located) reactions are shown in Figure
2.2a. Reactions are represented by transitions (rectangles), and located species
are represented by places (circles). Including species location in place names
allows for a semantical distinction of e.g. nuclear and cytosolic mRNA.

When considering the reactions together in parallel, the standard interpreta-
tion is for the reactions to share and compete for species which have syntactically
identical located names. In this example, the first and second reactions hence
share the species n[mrna] and the second and third reactions share the species
c[mrna]. A Petri net representation of the parallel composition based on this in-
terpretation is shown in Figure 2.2b. This illustrates how located reactions, and
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Fig. 2.1. An informal pictorial diagram of eukaryotic gene expression taking place in
three steps: 1) transcription, 2) transport and 3) translation
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n[gene]

n[rnap]

n[mrna] n[mrna] c[mrna] c[mrna] c[prot]

(a) Three Petri nets resulting from individual (but located) reactions. Shared places
are highlighted.

n[gene]

n[rnap]

n[mrna] c[mrna] c[prot]

(b) The composition obtained by merging the shared places of the three Petri
nets.

Fig. 2.2. Petri net models resulting from the CBS program for gene expression

more generally modules, are composed in CBS and hints at how a compositional
semantics in terms of Petri nets can be defined; a formal definition is given in
Section 6. Semantically we observe that compartments distribute over parallel
compositions and reactant/product sums, and that the parallel composition and
sum operators are commutative.

2.2 Modification Sites and Complexes

The next example is based on a scaffolded MAPK cascade from the yeast
pheromone pathway [19] and features complex species with modification sites.
An informal graphical representation is shown in Figure 2.3 and the correspond-
ing CBS program is shown in Listing 2.2.

The first five reactions in lines 1−12 model the formation of the scaffold com-
plex and correspond to the left part of Figure 2.3. The last three reactions in lines
14− 21 model the actual MAPK cascade, with each reaction phosphorylating a
single atomic species in a complex reactant, and correspond to the right part of
Figure 2.3. The scaffold is formed by the atomic species Ste5, Ste20 and Gbg, and
the species Fus3, Ste7 and Ste11 serve the MAPK, MAPK2 and MAPK3 rôles,
respectively. All species except Ste20 and Gbg have a single modification site,
p, which can be either phosphorylated or unphosphorylated, indicated by the
assignment of boolean values tt and ff . For example, Fus3{p=ff} represents Fus3

in its unphosphorylated state. Complexes are formed by composing modified
primitive species using the complex formation operator, -.

Semantically, a complex of modified atomic species can be represented by a
Petri net place named by the multiset of modified atomic species. Hence the
complex formation operator is commutative. More generally, modification sites
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Fig. 2.3. Scaffold formation and a scaffolded MAPK cascade, adapted from [19]

Listing 2.2. A CBS program for a scaffolded MAPK cascade in yeast.!
1 Ste5{p=f f } + Ste11{p=f f } −> Ste5{p=f f}−Ste11{p=f f } |
2

3 Ste7{p=f f } + Fus3{p=f f } −> Ste7{p=f f}−Fus3{p=f f } |
4

5 Ste5{p=f f}−Ste11{p=f f } + Ste7{p=f f}−Fus3{p=f f } −>
6 Ste5{p=f f}−Ste11{p=f f}−Ste7{p=f f}−Fus3{p=f f } |
7

8 Ste5{p=f f}−Ste11{p=f f}−Ste7{p=f f}−Fus3{p=f f } + Gbg −>
9 Ste5{p=f f}−Ste11{p=f f}−Ste7{p=f f}−Fus3{p=f f}−Gbg |

10

11 Ste5{p=f f}−Ste11{p=f f}−Ste7{p=f f}−Fus3{p=f f}−Gbg + Ste20 −>
12 Ste5{p=f f}−Ste11{p=f f}−Ste7{p=f f}−Fus3{p=f f}−Gbg−Ste20 |
13

14 Ste5{p=f f}−Ste11{p=f f}−Ste7{p=f f}−Fus3{p=f f}−Gbg−Ste20 −>
15 Ste5{p=f f}−Ste11{p=tt}−Ste7{p=f f}−Fus3{p=f f}−Gbg−Ste20 |
16

17 Ste5{p=f f}−Ste11{p=tt}−Ste7{p=f f}−Fus3{p=f f}−Gbg−Ste20 −>
18 Ste5{p=f f}−Ste11{p=tt}−Ste7{p=tt}−Fus3{p=f f}−Gbg−Ste20 |
19

20 Ste5{p=f f}−Ste11{p=tt}−Ste7{p=tt}−Fus3{p=f f}−Gbg−Ste20 −>
21 Ste5{p=f f}−Ste11{p=tt}−Ste7{p=tt}−Fus3{p=tt}−Gbg−Ste20 "



A Language for Biochemical Systems: Design and Formal Specification 83

may have arbitrary boolean expressions assigned which may include variables
for “matching” multiple physical species, thereby ameliorating the combinatorial
explosion problem at the level of species modifications. Semantically, a reaction
with such variables can be viewed as generating one concrete reaction for each
possible assignment of variables. It is however also possible to handle modifica-
tion state and variables directly through a semantics in terms of coloured Petri
nets as is demonstrated in Section 6.

One immediately notices a problem with the CBS program in Listing 2.2: the
program is difficult to read due to a high level of redundancy. As is common in
signalling pathways, some reactions change just a single state of modification in
a large complex, yet unaffected parts of the complexes are listed repeatedly. We
can improve the situation slightly by introducing an abbreviated notation where
an omitted modification site is implicitly assumed to be false, and a modification
site with no assignment is assumed to be true, so that for example Ste11{p}−Ste5
is understood as Ste11{p=tt}−Ste5{p=ff}. We assume this convention in the fol-
lowing. But the underlying problem of redundancy remains and is addressed
with dedicated language constructs in LBS.

2.3 Modules

The scaffolded MAPK cascade program is simple in that each reaction repre-
sents an autophosphorylation involving only a single reactant. We now shift the
focus and consider a larger, unscaffolded cascade model in which the MAPK
and MAPK2 proteins each have two phosphorylation sites, and in which each
phosphorylation step involves three reactions: binding of kinase and ligand, phos-
phorylation of bound ligand, and dissociation of phosphorylated ligand and ki-
nase. We furthermore include the corresponding dephosphorylation steps. We
choose for this example to adapt a previously published Ras/Raf/MEK/ERK
cascade [9]. An informal graphical representation is shown in Figure 2.4, and the
corresponding modular CBS program is shown in Listing 2.3.

The new language feature in this program is that of module definitions for rep-
resenting the relevant phosphorylation/dephosphorylation cycles, and the main
body of the program in line 47 then consists of five parallel module invocations.
Such a modular approach simplifies the presentation and should be contrasted
with other rule-based approaches using e.g. BIOCHAM where the program would
consist of one long, unstructured list of reactions. But as with a previous pro-
gram, we observe a high degree of redundancy. All five modules have the same
structure, consisting of two sets of three reactions for binding, modification and
unbinding.

A shorter version of the program could in principle be obtained through ap-
propriate derived forms for enzymatic reactions. But it appears unlikely that a
small, fixed set of derived forms can cater for all the variants that a modeller may
encounter. We may for example wish to consider variants of the above model
in which all the binding reactions are reversible, or in which binding and phos-
phorylation are combined into a single reaction. Hence we seek to address the
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Listing 2.3. A modular CBS program for the Raf/Ras/MEK/ERK MAPK cascade.!
1 module ra fCyc l e {
2 Ras + Raf −> Ras−Raf |
3 Ras−Raf −> Ras−Raf{m} |
4 Ras−Raf{m} −> Ras + Raf{m} |
5 PP2A1 + Raf{m} −> PP2A1−Raf{m} |
6 PP2A1−Raf{m} −> PP2A1−Raf |
7 PP2A1−Raf −> PP2A1 + Raf
8 } ;
9

10 module mekCycle1 {
11 Raf{m} + MEK −> Raf{m}−MEK |
12 Raf{m}−MEK −> Raf{m}−MEK{S218} |
13 Raf{m}−MEK −> Raf{m} + MEK{S218} |
14 PP2A2 + MEK{S218} −> PP2A2−MEK{S218} |
15 PP2A2−MEK{S218} −> PP2A2−MEK |
16 PP2A2−MEK −> PP2A2 + MEK
17 } ;
18

19 module mekCycle2 {
20 Raf{m} + MEK{S218} −> Raf{m}−MEK{S218} |
21 Raf{m}−MEK{S218} −> Raf{m}−MEK{S218 , S222} |
22 Raf{m}−MEK{S218 , S222} −> Raf{m} + MEK{S218 , S222} |
23 PP2A2 + MEK{S218 , S222} −> PP2A2−MEK{S218 , S222} |
24 PP2A2−MEK{S218 , S222} −> PP2A2−MEK{S218} |
25 PP2A2−MEK{S218} −> PP2A2 + MEK{S218}
26 } ;
27

28 module erkCycle1 {
29 MEK{S218 , S222} + ERK −> MEK{S218 , S222}−ERK |
30 MEK{S218 , S222}−ERK −> MEK{S218 , S222}−ERK{T185} |
31 MEK{S218 , S222}−ERK{T185} −> MEK{S218 , S222} + ERK{T185} |
32 MKP3 + ERK{T185} −> MKP3−ERK{T185} |
33 MKP3−ERK{T185} −> MKP3−ERK |
34 MKP3−ERK −> MKP3 + ERK
35 } ;
36

37 module erkCycle2 {
38 MEK{S218 , S222} + ERK{T185} −> MEK{S218 , S222}−ERK{T185} |
39 MEK{S218 , S222}−ERK{T185}−>MEK{S218 , S222}−ERK{T185 , Y187} |
40 MEK{S218 , S222}−ERK{T185 , Y187} −>
41 MEK{S218 , S222} + ERK{T185 , Y187} |
42 MKP3 + ERK{T185 , Y187} −> MKP3−ERK{T185 , Y187} |
43 MKP3−ERK{T185 , Y187} −> MKP3−ERK{T185} |
44 MKP3−ERK{T185} −> MKP3 + ERK{T185}
45 } ;
46

47 ra fCyc l e | mekCycle1 | mekCycle2 | erkCycle1 | erkCycle2 "
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Fig. 2.4. A Ras/Raf/MEK/ERK MAPK cascade represented by five phosphoryla-
tion/dephosphorylation cycles. Each phosphorylation and dephosphorylation step cov-
ers three underlying reactions for binding, phosphorylation/dephosphorylation, and
unbinding.

problem of reusability through language-level support for parameterised modules
in LBS.

3 The Language for Biochemical Systems

3.1 New Species and Compartment Definitions

CBS has a static semantics which catches typos by requiring that only species
names in a given set are used in programs. In LBS we include both new species
definitions and new compartment definitions directly in the language. New species
definitions include a list of modification sites and their type if any, and new com-
partment definitions include a specification of the parent, if any, and an optional
volume. The volume is used when compartments are referred to in rate expres-
sions. The semantics of LBS requires that species are only used with their defined
modification types and that compartments are only used inside their defined par-
ents. New species and compartment definitions are demonstrated by the program
in Listing 3.1 which is identical to the corresponding CBS program in Listing 2.1
except for the added definitions in the first three lines.

Species identifiers such as mrna are here assigned to new species. The text
new{} is formally a species expression which evaluates to a species value with
no modification sites and with a globally unique name that is used in e.g. the
underlying Petri net semantics. Hence the name of the species identifier, mrna,
does not in itself hold any identity of a species, and we may bind the same
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Listing 3.1. An LBS program for gene expression.!
1 spec gene = new{} , rnap = new{} , mrna = new{} , p rot = new{} ;
2 comp c new comp ; comp n = new comp inside c ;
3

4 c [
5 n [ gene + rnap −> gene + rnap + mrna ] |
6 n [ mrna ] −> mrna |
7 mrna −> prot
8 ] "
identifier to an entirely different species in another part of the program. This
allows different modules, possibly developed by different people, to use the same
species identifier for mRNA molecules which are semantically and biologically
different, and subsequently combine the modules into a single program without
unintended cross-talk. On the other hand, when species are intended to be shared
between modules, the species should be defined globally or made parameters of
modules as we demonstrate next.

3.2 Parameterised Modules

We extend the basic gene expression program to express two proteins, prot1 and
prot2, from two different genes, gene1 and gene2. We do so by abstracting the
gene expression process into a parameterised module and invoking the module
twice with the relevant parameters. The result is shown in Listing 3.2.

RNAP is defined globally in line 1, meaning that it will be shared between
all instances of the module defined in lines 3− 8. This is biologically meaning-
ful since the same RNAP species is used for transcription independently of the
gene in question. The module is parameterised on the nucleus compartment, the
gene and the target protein. The body is similar to before, except that the new
mRNA species is defined locally. This means that each instance of the module
uses semantically distinct mRNA, which again is biologically meaningful. Lines
10− 13 define the genes and proteins to be expressed together with the relevant
compartments, and line 15 is a parallel composition of two module invocations
inside the cytosol compartment. We could choose to define the nucleus compart-
ment globally in this particular case, but instead give it as a common parameter
in both module invocations in order to illustrate how this can be done in the
more general case.

3.3 Species Expressions

New species, species identifiers and complexes are technically considered species
expressions. Species identifiers can be bound to any species expressions, not
just the new atomic ones, allowing large complexes to be defined once and used
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Listing 3.2. A modular LBS program for gene expression instantiated with two genes
and two target proteins.!
1 spec rnap = new{} ;
2

3 module m(comp nuc ; spec gene , prot ) {
4 spec mrna = new{} ;
5 nuc [ gene + rnap −> gene + rnap + mrna ] |
6 nuc [ mrna ] −> mrna |
7 mrna −> prot
8 } ;
9

10 spec gene1 = new{} , p rot1 = new{} ;
11 spec gene2 = new{} , p rot2 = new{} ;
12 comp c = new comp ;
13 comp n = new comp inside c ;
14

15 c [ m(n , gene1 , prot1 ) | m(n , gene2 , prot2 ) ] "
repeatedly. Species expressions also include a construct for updating the modifi-
cation state of atomic species inside a complex. We illustrate this in Listing 3.3
which gives a more concise version of the CBS scaffolded MAPK cascade.

The first two lines consist of new species definitions as before, but now some
of the species are defined with a modification site called p of boolean type.
Lines 4-8 represent scaffold formation, but now the intermediate complexes are
bound to identifiers using the as keyword. This in-line approach to binding is
an abbreviation for binding a species expression to an identifier, then using the
identifier in subsequent reactions, so e.g. the program:!
1 Ste5 + Ste11 −> Ste5−Ste11 as a ; . . . "
is an abbreviation for the program:!
1 spec a = Ste5−Ste11 ;
2 Ste5 + Ste11 −> Ste5−Ste11 | . . . "
Reactions which have in-line definitions are composed in sequence, using the ;

operator rather than the parallel one, as the order of such reactions matters
since identifiers defined in one reaction can only be used in the following ones.

The species bound to e in line 8 is the full scaffold complex in its unphospho-
rylated form. Lines 10-12 represent the actual MAPK cascade. In line 10, the
complex bound to e becomes the same complex, but updated by changing the
phosphorylation state of site p in Ste11 to true. The result is then bound to a
new identifier, f. The last two lines follow a similar pattern. When updates are
made on atomic species we use an abbreviation and write e.g. Fus3{p} instead
of Fus3<Fus3{p}>, although this is not relevant in the above example.
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Listing 3.3. An LBS program for a scaffolded MAPK cascade in yeast.!
1 spec Fus3=new{p : bool } , Ste7=new{p : bool } , Ste11=new{p : bool } ;
2 spec Ste5=new{p : bool } , Ste20=new{} , Gbg = new{} ;
3

4 Ste5 + Ste11 −> Ste5−Ste11 as a ;
5 Ste7 + Fus3 −> Ste7−Fus3 as b ;
6 a + b −> a−b as c ;
7 c + Gbg −> c−Gbg as d ;
8 d + Ste20 −> d−Ste20 as e ;
9

10 e −> e<Ste11 {p}> as f ;
11 f −> f<Ste7 {p}> as g ;
12 g −> g<Fus3{p}> "

The reactions in the above LBS program avoid the redundancy which impairs
the reactions in the corresponding CBS program in Listing 2.2. This improves
readability. It also facilitates the process of program revision since adding e.g.
a new phosphorylated site to the definition of Ste5 only involves a subsequent
change to the first reaction. Contrast this to the corresponding CBS program in
which the same revision requires two changes in each of the eight reactions.

There are two further, perhaps less commonly used, species expression opera-
tors which enable complex species to be taken apart. Assuming the definition of
g given above, the selection expression g.Ste7 results in the atomic species from
g identified by Ste7; the removal expression g\Ste7 results in the complex species
g without Ste7. Hence the reaction g −> g.Ste7 + g\Ste7 represents dissociation
of Ste7 from g and could in this case be written explicitly, if more laboriously, as
follows:!
1 Fus3−Ste7{p}−Ste11 {p}−Ste5−Ste20−Gbg −>
2 Ste7{p} + Fus3−Ste11{p}−Ste5−Ste20−Gbg "
However, the species selection and removal operators are needed language con-
structs, not just notational conveniences. A species identifier used as the target
of the selection and removal operators could be a formal parameter, and as a con-
sequence of subtyping (introduced in the next subsection) its complete make-up
in terms of atomic species may not generally be known.

If the complex bound to g is a homo-multimer and has several copies of e.g.
Ste7, then selection and removal operate on all copies. This convention also
applies to the update operator: if the target of an update contains multiple
copies of the given species name, all copies are updated accordingly. It is however
possible to make distinctions between different copies of the same species in
homo-multimers, and we give an example of this when presenting the formal
semantics of LBS.
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Listing 3.4. A modular LBS program for the Ras/Raf/MEK/ERK signalling cascade.!
1 module ph( spec k , s :{m} ) {
2 k + s −> k−s |
3 k−s −> k−s {m} |
4 k−s {m} −> k + s {m}
5 } ;
6

7 module dph( spec p , s :{m} ) {
8 p + s {m} −> p−s {m} |
9 p−s {m} −> p−s |

10 p−s −> p + s
11 } ;
12

13 module cy c l e ( spec k , p , s :{m} ) {
14 ph( k , s :{m} ) | dph( p , s :{m} )
15 } ;
16

17 spec Ras = new{} ;
18 spec Raf = new{m: bool } ;
19 spec MEK = new{S218 : bool , S222 : bool } ;
20 spec ERK = new{T185 : bool , Y187 : bool } ;
21 spec PP2A1 = new{} , PP2A2 = new{} , MKP3 = new{} ;
22

23 cy c l e (Ras , PP2A1, Raf :{m}) |
24 cy c l e ( Raf{m} , PP2A2, MEK:{ S218 }) |
25 cy c l e ( Raf{m} , PP2A2, MEK{S218 } :{ S222 }) |
26 cy c l e (MEK{S218 , S222 } , MKP3, ERK:{T185}) |
27 cy c l e (MEK{S218 , S222 } , MKP3, ERK{T185 } :{Y187 }) "
3.4 Parametric Type and Subtyping

We now return to the unscaffolded MAPK cascade and the issue of reusability.
We noted that all the cycle modules used by the CBS program in Listing 2.3 have
the same structure, each with two sets of reactions for representing, respectively,
phosphorylation and dephosphorylation. The LBS program in listing 3.4 shows
how a general, parameterised cycle module can be defined, which in turn relies
on two general modules for phosphorylation and dephosphorylation.

The phosphorylation module named ph in lines 1-5 contains three reactions:
binding of a kinase k and substrate s, phosphorylation of s in the bound state,
and unbinding after phosphorylation. The two species are formal parameters,
but in contrast to earlier examples, the formal parameter s has an annotation
specifying that it must have a modification site m. The dephosphorylation mod-
ule named dph in lines 7-11 follows a similar structure and is parameterised
on a phosphatase p rather than a kinase. The cycle module in lines 13-15 is
parameterised on a kinase, a phosphatase and a substrate and invokes the phos-
phorylation and dephosphorylation modules in parallel. The invocations provide
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annotations for matching up the modification sites in the actual parameters with
the corresponding modification sites in the formal parameters, which in this case
is trivial since there is only the single choice, m. Note that there is scope for fur-
ther abstraction since the phosphorylation and dephosphorylation modules are
very similar. In fact they could be abstracted into a single module, but we refrain
from doing so for the sake of clarity.

Lines 17-21 define the new species participating in the program and the re-
maining lines invoke modules for the appropriate cycles. Let us consider the in-
vocation in line 24 in more detail. The first actual parameter, Raf{m}, provides
Raf in its phosphorylated state as the kinase, and the second parameter provides
PP2A2 as the phosphatase. The third parameter, MEK:{S218}, provides unphos-
phorylated MEK as the substrate and the annotation {S218} specifies the target
site for phosphorylation. This raises two important points. Firstly, the names
of modification sites in the actual and formal annotations differ, resulting in a
notion of parametric type. The underlying semantics maintains a mapping from
formal to actual modification site names when evaluating the body of a module.
Secondly, there are two possible choices of modification sites to be phosphory-
lated in the actual parameter, namely S218 and S222. The annotation picks out
the former, and the latter then plays no rôle from the perspective of the module.
This results in a notion of subtyping : any actual parameter will do, as long as it
contains at least the sites specified in the annotation and with types that match
the corresponding formals. This corresponds to record subtyping in classical pro-
gramming languages [30]. The module invocation in line 25 is similar but picks
out the second site, S222, for phosphorylation, and also specifies that MEK is
already phosphorylated on site S218.

In general, parameters may be complexes rather than atomic species. Suppose
for example that MEK is in a complex with some other species a in the actual
parameter in line 25. This can be written as follows:

!
1 . . .
2 cy c l e ( Raf{m} , PP2A2, MEK{S218}−a :MEK{S222 }) |
3 . . . "
This results in an additional layer of subtyping: any actual parameter will do, as
long as it contains at least the atomic species in the annotation. The annotation
is here extended in order to specify that it is the atomic species MEK rather
than a that should be mapped to the substrate. In fact the annotations used in
Listing 3.4 are abbreviations of this more general form, so e.g. MEK{S218}:{S222}
is an abbreviation of MEK{S218}:MEK{S222}. Similarly, the annotated formal
parameter s:{m} in the cycle module abbreviates s : s{m}, and formal annotations
may in general contain multiple atomic species.

We end the discussion of parameterised modules with an abstraction of the
entire MAPK cascade into a module which is itself reusable. This, together with
a module invocation, is shown in Listing 3.5.
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Listing 3.5. A general, modular LBS program for the Ras/Raf/MEK/ERK signalling
cascade. The species and module definitions from Listing 3.4 are omitted.!
1 . . .
2 module mapk(
3 spec k4 , k3 :{m} , k2 :{m1, m2} , k1 :{m1, m2} ,
4 p3 , p2 , p1 ) {
5

6 cy c l e ( k4 , p3 , k3 :{m}) |
7 cy c l e ( k3{m} , p2 , k2 :{m1}) |
8 cy c l e ( k3{m} , p2 , k2{m1} :{m2}) |
9 cy c l e ( k2{m1,m2} , p1 , k1 :{m1}) |

10 cy c l e ( k2{m1,m2} , p1 , k1{m1} :{m2})
11 } ;
12

13 mapk(Ras , Raf :{m} , MEK:{ S218 , S222 } , ERK:{T185 , Y187 } ,
14 PP2A1, PP2A2, MKP3) "
3.5 Nondeterminism

Nondeterminism for contextual combinatorial explosion. In the previ-
ous examples we assumed that species only participate in reactions when they
are atomic or when they are in the context of a specific complex as in the scaf-
folded MAPK cascade. In reality however, atomic species are likely to react in
the context of many possible complexes. In the unscaffolded MAPK cascade,
Raf may for example continue to function as a kinase for MEK when it is bound
to its own kinases and/or phosphatases and when MEK is bound to its own
phosphatase. This gives rise to a kind of combinatorial explosion which we call
contextual and which is difficult to model in CBS under the basic semantics in
terms of Petri nets, ODEs and CTMCs. The reason is that species in reactions
are interpreted at face value with an “empty context” (except for modification
site variables which allow combinatorial explosion at the level of modifications
to be handled). In contrast, reaction rules in rule-based languages such as κ
and BioNetGen are interpreted “in any context”, and can be executed or anal-
ysed without generating the full set of empty context reactions which may in
some cases be infinite. Languages such as κ and BioNetGen therefore handle
combinatorial systems very well.

This could be exploited by giving a translation of LBS into κ or BioNetGen
based on a suitable choice of modification site types, but we do not pursue this
direction here. Instead we seek a middle ground in which all possible species
contexts continue to be specified in reactions, but in a syntactically compact
manner through the notion of nondeterministic species. Listing 3.6 shows an
example of phosphorylation using nondeterministic versions of Raf and MEK.

The or operator expresses that either of its operands can take place in reac-
tions where the expression is used. The distinguished species SNil is a neutral
element under the complex formation operator, i.e. the axiom a−SNil = a holds
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Listing 3.6. Phosphorylation using nondeterministic species!
1 spec NRaf = Raf{m}−(SNil or Ras or PP2A1) ;
2 spec NMEK = MEK−(SNil or PP2A2 ) ;
3

4 ph(NRaf , NMEK:MEK{S218 }) "
for any species a. The distributivity axiom a−(b or c) = a−b or a−c also holds
for all species a, b and c. Hence line 1 in the above program expands to a choice
of three species, namely Raf{m} in isolation or in complex with Ras or PP2A1,
and line 2 expands to a choice of two species, namely MEK in isolation or in
complex with PP2A2.

A reaction with nondeterministic species semantically gives rise to a number
of parallel reactions, one for each possible choice of species. For example, the first
reaction k + s −> k−s in the ph module now gives rise to a parallel composition
of 6 reactions:!
1 Raf{m} + MEK −> Raf{m}−MEK |
2 Raf{m}−Ras + MEK −> Raf{m}−Ras−MEK |
3 Raf{m}−PP2A1 + MEK −> Raf{m}−PP2A1−MEK |
4

5 Raf{m} + MEK−PP2A2 −> Raf{m}−MEK−PP2A2 |
6 Raf{m}−Ras + MEK−PP2A2 −> Raf{m}−Ras−MEK−PP2A2 |
7 Raf{m}−PP2A1 + MEK−PP2A2 −> Raf{m}−PP2A1−MEK−PP2A2 | "
The two other reactions in the ph module have similar expansions, and the ph

module invocation hence results in a total of 18 reactions.

Nondeterminism for species variant combinatorial explosion. The above
example demonstrates how nondeterminism can be used to drastically reduce the
size of programs in which the combinatorial explosion is contextual. Nondeter-
minism can also be used to handle combinatorial explosions arising from variants
of individual proteins which largely react in the same way. For example, Raf has
three variants RafA, RafB and RafC; MEK has two variants MEK1 and MEK2;
and ERK has two variants ERK1 and ERK2 [28]. Rule-based languages such as
κ and BioNetGen do not per se have any dedicated means of handling this source
of nondeterminism, but a recent extension of κ provides some level of syntactical
support [10]. Indeed this κ extension, together with our need to handle contex-
tual combinatorial explosion, are the two motivating factors for the introduction
of nondeterminism into LBS. Listing 3.7 shows how the MAPK cascade module
can be used with species variants. In order to be of interest, one would expect
that some reactions distinguish between the variants, but we omit this aspect
in the present example.

Each individual member of the nondeterministic species in lines 16-18 is given
a separate annotation at time of definition rather than at time of module in-
vocation. The reason is that the members do not have any common atomic
species, and in general they may not have common modification sites either,
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Listing 3.7. The MAPK cascade module instantiated with nondeterministic species!
1 . . .
2 spec Ras = new{} ;
3

4 spec RafA = new{m: bool } ;
5 spec RafB = new{m: bool } ;
6 spec RafC = new{m: bool } ;
7

8 spec MEK1 = new{S218 : bool , S222 : bool } ;
9 spec MEK2 = new{S218 : bool , S222 : bool } ;

10

11 spec ERK1 = new{T185 : bool , Y187 : bool } ;
12 spec ERK2 = new{T185 : bool , Y187 : bool } ;
13

14 spec PP2A1 = new{} , PP2A2 = new{} , MKP3 = new{} ;
15

16 spec NRaf = RafA :{m} or RafB :{m} or RafC :{m} ;
17 spec NMEK = MEK1:{ S218 , S222} or MEK2:{ S218 , S222 } ;
18 spec NERK = ERK1:{T185 , Y187} or ERK2:{T185 , Y187 } ;
19

20 mapk(Ras , NRaf , NMEK, NERK, PP2A1, PP2A2, MKP3) "
so it is necessary to identify the atomic species and sites to be mapped from
the corresponding formals on an individual basis; recall here that e.g. RafA:{m}
and RafB:{m} abbreviate respectively RafA:RafA{m} and RafB:RafB{m}, so the
annotations do indeed differ between different members of the nondeterminis-
tic species. For that reason also semantically, annotations are associated with
species rather than with module invocations, and the mappings between formals
and actuals are maintained locally within individual species rather than glob-
ally. Invocation of the mapk module results in 102 reactions as opposed to the
30 reactions in the original program.

The mechanism of nondeterministic selection. An important point about
Listing 3.7 is that nondeterministic species are expanded at the level of reac-
tions and not at the level of modules. This means that the mapk module in-
vocation is not equivalent to a parallel composition of module invocations for
each choice of species. Such an interpretation would result in 360 reactions, but
360− 102 = 258 of these would be duplicates, effectively adding up the rates
of duplicated reactions, which is certainly not what we intend. In this respect
LBS has a call-by-name semantics. On the other hand, species identifiers are
resolved at time of module invocation where actual species parameters are for-
mally evaluated to sets of species values, so in this respect LBS has a call-by-value
semantics.

An additional subtlety arises in reactions where the same species occurs mul-
tiple times as a reactant or product. Consider for example the following:
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!
1 spec a1 = new{} , a2 = new{} , b = new{} ;
2 spec a = a1 or a2 ;
3 a + a + b −> a−a−b "
There are two reasonable, but very different, possibilities for expansion of the
reaction. The first requires that the same choice for a is made within the scope
of the reaction:!
1 a1 + a1 + b −> a1−a1−b |
2 a2 + a2 + b −> a2−a2−b "
The second possibility allows different copies of the same identifier to take differ-
ent values, but with the correspondence between the occurrences on the reactant
and product sides being preserved:!
1 a1 + a1 + b −> a1−a1−b |
2 a1 + a2 + b −> a2−a2−b |
3 a2 + a1 + b −> a2−a1−b |
4 a2 + a2 + b −> a2−a2−b "
The correct expansion depends on the specific application. Although the first
may seem most appropriate in the general case, the second is for example useful
for modelling the combinatorial dimerisation of different variants of ErbB re-
ceptors [10] (note that two of the resulting reactions are equivalent, effectively
duplicating their rates). In order to cater for these different possibilities, LBS
has two reaction arrows. The basic reaction arrow, −>, which has been used in
the examples so far, results in the first expansion, and we call this a selection
arrow. The double-headed reaction arrow, −>>, results in the second expansion,
and we call this an L-R equality-preserving arrow.

In order to give a uniform semantical treatment of nondeterminism, and to
enable other expansions than the two described above, LBS has a dedicated
force operator for forcing nondeterministic choice. For example, the program:!
1 spec a = force a1 or a2 ;
2 P "
results in a parallel composition of P with a binding of a to a1 in one parallel
component and P with a binding to a2 in the other parallel component. Reactions
using either of the two arrows are then derived forms expressed in terms of the
force operator and a third deterministic reaction arrow, =>, which requires that
reactants and products do not contain nondeterministic species. For example,
the program:!
1 a + a + b −> a−a−b "
abbreviates the program:
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!
1 spec a = force ( a ) ;
2 spec b = force (b ) ;
3 a + a + b => a−a−b "
and the program:!
1 a + a + b −>> a−a−b "
abbreviates the program:!
1 spec a1 = force ( a ) ;
2 spec a2 = force ( a ) ;
3 spec b1 = force (b ) ;
4 a1 + a2 + b1 => a1−a2−b1 "
Nondeterministic species expressions which are not bound to identifiers are not
allowed in reactions with any of the three arrows. This is because the implicit
forcing is done on identifiers rather than on general species expressions, which
allows the identity between different occurrences of e.g. the species a to be pre-
served after nondeterministic selection.

Limitations. In the examples we have assumed that reaction rates are inde-
pendent of nondeterministic choices. This assumption appears to be in line with
published models of e.g. the EGFR pathway [7], although this may be due to
limited knowledge rather than biological reality. We note however that it is pos-
sible to choose different rates for different members of nondeterministic species
based on their state of modification by using conditionals in rate expressions.
Even with no distinguishable biological state of modification, one can “cheat”
and add a site which serves the sole purpose of identifying members of nonde-
terministic species. But in the extreme case where all possible combinations of
nondeterministic members in reactions give rise to different rates, this approach
merely shifts the problem of combinatorial explosion from the reaction level to
the reaction rate level. This is a potential practical limitation of nondeterminism.

A related limitation is the inability to constrain the choice of one nondetermin-
istic species based on the choice of another; currently two different nondetermin-
istic species in a reaction gives rise to reactions with all possible combinations of
choices. This can however be addressed using a similar approach to that described
above, where reactions with any incompatible choices are given rates of 0.

Finally, we note that even though nondeterminism can be used to write com-
binatorial programs in a syntactically compact manner, the resulting semantical
objects may be too large for analysis or simulation to be feasible.

3.6 Model Variation

Given an LBS program it is sometimes of interest to vary it in a number of
ways and examine the resulting effect on behaviour. In support of a structured
approach to variations, LBS has a variation operator, || , which semantically
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Listing 3.8. An extension of the MAPK program in Listing 3.7 (not repeated here)
with variations for generating one semantical object for each possible initial condition.!
1 . . . |
2 ( in i t RafA 500 | | PNil ) |
3 ( in i t RafB 500 | | PNil ) |
4 ( in i t RafC 500 | | PNil ) |
5

6 ( in i t MEK1 500 | | PNil ) |
7 ( in i t MEK2 500 | | PNil ) |
8

9 ( in i t ERK1 500 | | PNil ) |
10 ( in i t ERK2 500 | | PNil ) "
gives the union of its operands, i.e. programs evaluate to sets of semantical
objects. Listing 3.8 shows how the variation operator can be used to generate
a semantical object for each of the given possible initial conditions of species
variants in the MAPK cascade program.

Initial condition statements such as init RafA 500 are first-class programs and
specify a given initial population or concentration for a species. If no initial con-
ditions are specified in a program, the 0 initial population or concentration is as-
sumed for all participating species. The distinguished program PNil is a neutral
element under parallel composition, i.e. the axiom P | PNil = P holds for all pro-
grams P; also the distributivity axiom P1 | (P2 || P3) = (P1 | P2) || (P1 | P3)

holds for all programs P1, P2 and P3. Hence the parallel composition shown
above is a power set construction and expands to a variation composition of all
27 = 128 possible combinations of initial conditions in parallel with the program
represented by dots in line 1, in this case the previously defined MAPK cascade.

3.7 Output Species Parameters

Manipulations of large complexes are often spread across multiple modules. Some-
times there is a natural input-output relationship between these modules where
a species which is constructed in one module may be the starting point for fur-
ther manipulation in another. This applies for example to the scaffolded MAPK
cascade program in Listing 3.3 which can benefit from a decomposition into two
modules, one for scaffold formation, and one for the actual MAPK cascade. The
fully formed scaffold in its unphosphorylated state can be considered as an out-
put of the first module and as an input to the second. Although one could simply
pass this connecting species as a common parameter to both modules, this would
involve the entire scaffold to be written out at the time of module invocation, thus
repeating the definitions already given during scaffold formation. In order to avoid
this, we introduce the notion of output species, and a modular version of the yeast
MAPK cascade using this idea is shown in Listing 3.9.

The first two lines define four new species while the remaining two species used
in the program are defined locally in the formation module. The formation module
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Listing 3.9. A modular LBS program for scaffold formation and a scaffolded MAPK
cascade in yeast.!
1 spec Fus3 = new{p : bool } , Ste7 = new{p : bool } ;
2 spec Ste11 = new{p : bool } , Ste5 = new {p : bool } ;
3

4 module format ion ( specout e : Fus3−Ste7−Ste11−Ste5 ) {
5 spec Ste20 = new{} , Gbg = new{} ;
6 Ste5 + Ste11 −> Ste5−Ste11 as a ;
7 Ste7 + Fus3 −> Ste7−Fus3 as b ;
8 a + b −> a−b as c ;
9 c + Gbg −> c−Gbg as d ;

10 d + Ste20 −> d−Ste20 as e
11 } ;
12

13 module mapk( spec a : k1{m}−k2{m}−k3{m} ; specout d : a ) {
14 a −> a<k3{m=tt}> as b ;
15 b −> b<k2{m=tt}> as c ;
16 c −> c<k1{m=tt}> as d
17 } ;
18

19 format ion ( spec l i n k 1 ) ;
20 mapk( l i n k 1 : Fus3{p}−Ste7 {p}−Ste11{p} , spec l i n k 2 ) ;
21 . . . "
has a single formal parameter which specifies that the species e defined in the
module body is given as an output, and the associated annotation specifies that
the output contains the species Fus3, Ste7, Ste11 and Ste5. In fact the output also
contains Ste20 and Gbg, but these are not exposed, which gives rise to a notion
of subtyping similar to that of standard species parameters.

The mapk module has a parameter a and also an output species parameter
d which is defined in the module body and is specified to contain at least the
species of a. In line 19 the formation module is invoked and results in a binding
of the identifier link1 to the output scaffold species. In line 20 this is passed
on as a parameter to the mapk module which in turn results in a binding of
the identifier link2 to the phosphorylated scaffold. In the full model of the yeast
pheromone pathway, Ste5 dissociates from the scaffold link2 resulting from the
MAPK cascade. We can deduce by inspection of the program that the complex
bound to link2 does indeed contain the species Ste5, since link1 contains Ste5

and link2 contains at least the same species as link1. The full program contains
five modules which can be connected naturally using this approach [27].

4 The Abstract Syntax of LBS

The previous section gave an informal introduction to the concrete syntax and
main features of LBS. This section formally defines the abstract syntax of LBS
which forms the basis of the general and concrete semantics given in the next
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two sections. The formal definition of the concrete syntax and its mapping into
the abstract syntax are omitted, since both can be deduced without surprises
from the examples and from the abstract syntax.

In order to achieve our aim of generality, the abstract syntax is parameterised
on a set of modification site types ρ and modification site expressions em. We di-
vide the language into four main syntactic categories, for compartments, species,
programs and definitions, and consider each in turn. But first we introduce the
notation used in this section and throughout the paper.

4.1 Notation

We let R denote the set of real numbers and N denote the set of natural numbers.
We write x for lists, x.i for the ith element (starting from 1) of a list, |x| for
the length of a list and ε for the empty list. When a list should be thought of
as representing a set, we write x

!
instead of x. The set of indices of a list x is

{i | 1 ≤ i ≤ |x|}. The sublist of x consisting of the elements at some subset I
of the indices of x is written x.I. The Cartesian product x ×◦ y, where ◦ is a
pairing operator on elements of the respective lists, is the list of length |x| · |y|

s.t. (x ×◦ y).((i − 1)|x| + j)
∆% x.i ◦ y.j. The concatenation of lists x and y is

written x y, and the prefix and postfix of an element a to a list x are written ax
and xa, respectively.

We write {xi}i∈I for a finite indexed set and omit I and/or i and write {xi}I ,
{xi} or {x} when they are understood from the context. The set of multisets of
a set S is denoted by MS(S) and is defined as the set of total functions from
S to the natural numbers, i.e. MS(S)

∆% S → N. We adopt the usual multiset
notation and write e.g. x + 2 · y for the multiset containing the element x and
two copies of y, and we write MS(x) for the multiset representation of a list x.
We also use the standard notation

∏
i∈I Xi for dependent sets.

We write x
∆% y for definitions where x equals y if y is defined, and where x

is undefined otherwise. When a notion of well-typedness applies to y, we further-
more write x

∆%t y for definitions where x equals y if y is defined and well-typed,
and where x is undefined otherwise.

Partial finite functions f are denoted by finite indexed sets of pairs {xi '→ yi}
where f(xi) = yi. The empty function is correspondingly denoted by ∅. The
domain of definition and image of a function f are denoted by dom(f) and
im(f), respectively. For functions f and g we define the update of f by g, written
f〈g〉, as follows:

f〈g〉(x)
∆%

{
f(x) if x ∈ dom(f) \ dom(g)
g(x) if x ∈ dom(g)

If g consists of a single binding x '→ y we write f〈x '→ y〉 instead of f〈{x '→ y}〉.
We specify the type of a partial function f by writing f(x) = y where x and y
are given variables ranging over two sets; these sets are then understood to form
the domain and image of f .



A Language for Biochemical Systems: Design and Formal Specification 99

When an element of a list or an indexed set is referred to without explicit
quantification in a semantical definition, the index is assumed to be universally
quantified over a set which is understood from the context. Under such circum-
stances we often omit the index and write e.g. x instead of x.i. If ◦ is an operation
on the elements of lists x and y both of length n, we write x ◦ y for the list of
length n in which the ith element is x.i ◦ y.i.

4.2 Compartments

Compartment expressions. The abstract syntax for basic compartment ex-
pressions is shown in Table 4.1, where idc ranges over the set of compartment
identifiers and r ∈ R. New compartments are created using the new compart-
ment expression which explicitly records a parent compartment and a volume.
In cases where a compartment is used at the top level, the world compartment
can be specified as a parent, hence allowing compartment hierarchies to be ter-
minated. A compartment is generally used in multiple contexts by binding it
to an identifier at time of creation. The nil compartment functions as a neutral
element for the composition of compartment lists. It is paired with a parent
compartment, which is necessary for type-checking of compartment hierarchies.
Nil compartments can for example be used to decrease the depth of a module
hierarchy when passed as parameters to modules.

Table 4.1. The abstract syntax for compartment expressions

ec ::= Compartment expression

| new comp vol r inside ec New compartment

| " World compartment

| idc Compartment identifier

| 1c in ec Nil compartment

Although the world compartment figures as a general compartment in the
abstract syntax, it is only intended for use as a parent of new compartments and
of the nil compartment. It is not intended for use in e.g. reactions, and its proper
usage is enforced in the semantics for programs. One could enforce this intended
usage syntactically by introducing separate production rules for top level and
nested new compartment and nil compartment expressions. However, whether or
not a compartment features at the global top level of a program is not generally
known at time of definition: take for example compartment definitions inside a
module, where the parent compartment may be a formal parameter.

Derived compartment expressions. The volume in new compartment ex-
pressions may be omitted, in which case a default volume of 1.0 is assumed. The
parent compartment in new compartment and nil compartment expressions may
also be omitted, in which case the world parent compartment is assumed.
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4.3 Species

Modification site expressions. Recall that the abstract syntax for species
expressions is parameterised on a set of modification site types ρ and a set of
modification site expressions em. Since boolean expressions are of widespread
practical use as demonstrated in the examples, we assume that the set of modi-
fication types contains the boolean type bool, and that the set of modification
site expressions contains the boolean expressions eb generated by the grammar
in Table 4.2 where x ranges over the set of variables. The boolean expressions
contain the usual tt/ff base values and a minimal set of connectives from which
the full set of boolean connectives can be defined as derived forms in the usual
manner. Variables are used to create species expressions which can match multi-
ple concrete species. We assume that the set of variables is closed by prefixing of
underscore-terminated binary strings, i.e. that b x is a variable for all b ∈ {0, 1}∗;
this is needed to confine variables to their appropriate namespace in the seman-
tics. The type annotation of variables is likewise used for technical convenience
in the semantics.

Table 4.2. The abstract syntax for boolean expressions

eb ::= Boolean expression

| tt True

| ff False

| x : bool Typed variable

| eb or e′b | not eb Boolean operators

Species expressions. The abstract syntax for species expressions is shown in
Table 4.3, where ns ranges over the set of species names, nm ranges over the set of
modification site names and ids ranges over the set of species identifiers. Species
names identify atomic species independently of any modification sites, while
species identifiers refer to possibly complex species including both the names and
modification states of atomic species in the complex. We assume for technical
reasons that both the set of species identifiers and the set of binary strings is
contained in the set of species names. We assume furthermore, as for variables,
that the set of species identifiers is closed by prefixing of underscore-terminated
binary strings, i.e. that b ids is also a species identifier for all b ∈ {0, 1}∗.

The grammar distinguishes between species expressions es and extended
species expressions es+ which add the new atomic species expression. This is
because new species expressions only make sense in the context of definitions,
where the resulting new species value can be bound to an identifier. Species
bound to an identifier can then be used in multiple contexts and given an ini-
tial population through the construct given in the abstract syntax for programs.
Technically, separating out the new species expression alleviates the need to con-
sider fresh names in the semantics for the remaining expressions and for certain
cases of programs; this significantly simplifies the presentation.
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Table 4.3. The abstract syntax for species expressions

es+ ::= es Extended species expression

| new ns, σ New atomic species

es ::= Species expression

| idc[es] Located species

| es − e′s Composite species

| es.idc[ns] Species selection

| es\idc[ns] Species removal

| es〈idc[ns, α]〉 Species update

| es or e′s Species choice

| es : ξ Species annotation

| ids Species identifier

| 0s Nil species

ξ ::= idc[ns, nm] Annotation

σ ::= {nm %→ ρ} Modification type

α ::= {nm %→ em} Modification assignment

New atomic species are created by specifying a name and a type consisting
of a partial finite function from modification site names to modification site
types. The modification sites are assigned default expressions appropriate for
the corresponding type, e.g. ff in the case of the bool type. In contrast to new
compartment expressions, a new species expression explicitly includes a species
name. Often this name is the same as the identifier to which the new species ex-
pression is assigned, which is reflected in a derived form of definitions. Although
semantically the underlying unique species name will be freshly generated, the
specified name is used to identify specific atomic species in subsequent species
selection, removal and update expressions. Species names rather than general
species expressions are used here for two reasons. First, the update expression
updates a specific atomic species in a complex. Second, atomic species names are
local to a species, meaning that the same atomic species name in two different
species may map to different underlying fresh species names. This is used to cater
for nondeterminism in the context of parametric types in species parameters
of modules. Similar considerations of nondeterminism apply to compartments,
which are only used in species expressions indirectly through compartment iden-
tifiers rather than through general compartment expressions.

The species annotations necessary to match the names and sites of actual
parameters to those of formal parameters are handled in the abstract syntax for
species expressions rather than in the abstract syntax for module invocation in
programs. This too is because of nondeterminism where separate annotations
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may be required for each member of a nondeterministic species expression as
demonstrated previously in Listing 3.7.

Derived species expressions. Two derived forms of species expressions allow
updates and annotations of atomic species without having to repeat atomic
species names. Specifically, the expressions:

ids{α} and ids : nm

abbreviate respectively the expressions:

ids〈ε[ids,α]〉 and ids : ε[ids, nm]

4.4 Programs

Basic programs. The abstract syntax for programs is shown in Table 4.4,
where n ∈ N, idp ranges over the set of program identifiers and ida ranges over
the set of algebraic rate function identifiers. Definitions, ranged over by D, are
treated in the next subsection. Module invocations include actual parameters
for compartments, species, rates and output species, and as already pointed
out, the annotations of actual species parameters necessary to match the formal
parameters are handled in the abstract syntax for species expressions.

Reaction rate expressions can either be mass-action rates, given inside braces,
or general algebraic rate expressions, given inside square brackets. Algebraic rate
expressions include rate constants, compartments and species, where the latter
two are interpreted as respectively a volume and a population. Algebraic rate
expressions also include a number of basic functions and arithmetic operators
which feature regularly in the biological literature; these are inspired by simi-
lar features found in BioPEPA. Custom rate functions which are parameterised
on compartments, species and algebraic rate expressions can be defined and in-
voked repeatedly. These also allow the definition of common rate functions for
e.g. Michaelis-Menten or Hill kinetics. Conditionals enable different rates to be
chosen depending on the state of modification of reactants as recorded by match
variables. This mechanism also allows a distinction between different members
of a nondeterministic species to be made assuming a convention where an addi-
tional site is added in which a value identifies each individual nondeterministic
member. Note that mass-action rates are represented by algebraic expressions
in the abstract syntax because this allows for a uniform treatment of defined
constants and conditionals. Semantically however, mass-action algebraic rate
expressions are required to evaluate to constants.

Only the simplest possible reaction is included in the abstract syntax for
programs. Species expressions are assumed to be deterministic, requiring any
nondeterministic selection to be carried out in advance through the use of the
force operator; there are no in-line species definitions; and there are no reversible
or enzymatic reactions.
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Table 4.4. The abstract syntax for basic programs

P ::= Program

| n · es ⇒er n′ · e′s if eb Reaction

| 0p Nil program

| P | P ′ Parallel composition

| P || P ′ Variation composition

| idc[P ] Located program

| D ; P Definition

| idp(ec; es+; ea;out ids) ; P Module invocation

| ids = force es ; P Nondeterministic selection

| init es = r Initial population

er ::= Rate expression

| {ea} Mass-action rate

| [ea] Algebraic rate

ea ::= Algebraic rate expression

| r Constant

| idc Volume

| es Population

| if eb then ea else e′a Conditional

| ida(ec; es; ea) Function invocation

| exp(ea) | log(ea) | sin(ea) | cos(ea) Standard functions

| ea + e′a | ea - e′a Arithmetic operators

| ea × e′a | ea / e′a | eaˆe′a

Derived programs. More complicated reactions are generated by the abstract
syntax for derived programs in Table 4.5, all of which can be defined in terms
of basic programs. The dots in the grammar indicate extension of the grammar
for basic programs. Derived programs include the two additional reaction arrows
which cater for nondeterministic species and which implicitly force nondetermin-
istic selection in two different manners, as exemplified in section 3.5. Enzymatic
reactions are given by a list of enzymes to the left of the tilde symbol. All types
of reactions can be reversible with any combination of mass action and general
algebraic rate expressions for each of the two directions. Finally, species expres-
sions in derived reactions may contain in-line definitions which go into scope in
the sequential program following the reaction.

Further derived forms arise by omitting the enzyme or boolean expression
parts of reactions. The absence of an enzyme part is understood as an enzyme
part with an empty list of species, and the absence of a boolean expression part
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Table 4.5. The abstract syntax for derived programs

P ::= . . . Derived program

| e′′s ∼ n · es Aer n′ · e′s if eb ; P General reaction

| e′′s ∼ n · es A
er,e′r
2 n′ · e′s ∼ e′′′s if eb, e′b ; P General reversible reaction

A ::= Reaction arrows

| ⇒ Deterministic arrow

| → Selection arrow

| ! L-R equality-preserving arrow

A2 ::= ⇔ | ↔ | "! Reversible reaction arrows

es ::= . . . Derived species expressions

| es as ids Inline definition

is understood as a boolean expression part with the expression tt. Stoichiometry
in reactions can be omitted, in which case stoichiometry 1 is assumed. Finally,
the sequential programs following reactions and module invocations can be omit-
ted when there are no in-line species definitions or output species parameters,
respectively. In these cases the nil sequential program is assumed.

4.5 Definitions

Basic definitions. The abstract syntax for definitions is shown in Table 4.6
and should be self-explanatory. Formal species parameters have annotations ξ as
defined in the abstract syntax for species expressions. Together with the corre-
sponding annotation of actual species parameters, this is sufficient to construct
a mapping that allows use of the species inside the module body.

Derived definitions. There is one important derived form concerning new
species definitions. Recall from the abstract syntax for species that a new species

Table 4.6. The abstract syntax for definitions

D ::= Definition

| ids = es+ Species

| idc = ec Compartment

| ida(idc; ids : ξ; ida) = ea Function

| idp(idc; ids : ξ; ida;out id′
s : es) = P Module



A Language for Biochemical Systems: Design and Formal Specification 105

expression includes a species name. But in most cases this name will be identical
to the identifier that the new species expression is bound to. The name can then
be omitted, i.e. the expression:

ids = new σ

abbreviates the expression:

ids = new ids,σ

This is the reason that the set of species names is assumed to contain the set of
species identifiers.

5 The General Semantics

This section defines a denotational framework for compositionally assigning se-
mantical objects such as Petri nets to LBS programs. Our aim is to abstract
away from the specific kind of semantical object under consideration.

Assumptions. We achieve our aim of abstraction by assuming a given structure
(S, |S ,0S , RS , IS) consisting of:

– A set S of semantical objects ranged over by O.
– A partial binary composition function |S on semantical objects.
– A distinguished nil semantical object 0S ∈ S.
– A partial reaction assignment function of the form RS(R, b) = O assigning a

semantical object to a given reaction R, named b, in a normal form, defined
below (b is used to name e.g. Petri net transitions).

– A partial initial condition assignment function of the form IS(vgns, r) = O
assigning a semantical object to an initial population or concentration r of
species vgns in a ground normal form, defined below.

The last implies that semantical objects have a representation of initial condi-
tions, e.g. an initial marking in the case of a Petri net. Specific examples are
given in Section 6.

Recall that the abstract syntax is parameterised on modification site types
ρ and modification site expressions em. We assume the following relations and
functions pertaining to these:

– A typing relation of the form em : ρ giving types to modification site expres-
sions. This is used for determining well-typedness of species expressions.

– A default expression function of the form default(ρ) = em giving default
expressions to types. This is used for assigning expressions to unassigned
sites in species expressions.

– A variable function of the form FV(em) = {xi : ρi} giving the set of (typed)
variables in a modification site expression. This is used for determining well-
typedness of reactions and for computing semantical objects of reactions in
some of the concrete semantics.
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– An expression denotation function of the form !em"mΓx = vm for evaluating
a modification site expression to a value vm in a given set !ρ"t where em : ρ,
given a variable environment of the form Γx(x : ρ) = vm assigning values
vm ∈ !ρ"t to typed variables. This is used for computing semantical objects
of reactions in some of the concrete semantics.

– An update function of the form em〈e′m〉 = e′′m for updating one modifica-
tion site expression with another. This is used in the semantics of species
update expressions. While this operation is trivial for e.g. boolean expres-
sions in which the original expression is simply disregarded, we anticipate
the addition of other types for which the situation is more subtle.

– A seal function of the form seal(em, b) = e′m for confining names in modifi-
cation site expressions to a namespace given by a binary string b ∈ {0, 1}∗.
The namespace is used to avoid capture of e.g. variables in actual species
parameters when used inside the body of a module.

In the case where only the boolean modification site type is given, and where
the set of modification site expressions is hence the set of boolean expressions,
the above functions can be defined as follows:

– em : bool for all em.

– default(ρ)
∆% ff.

– FV(em) is defined inductively as follows:
• FV(tt)

∆% ∅
• FV(ff)

∆% ∅
• FV(x : bool)

∆% {x : bool}
• FV(eb or e′b)

∆% FV(eb) ∪ FV(e′b)

• FV(not eb)
∆% FV(eb)

– !eb"mΓx = !eb"bΓx is defined inductively as follows:

• !tt"bΓx
∆% tt

• !ff"bΓx
∆% ff

• !x : bool"bΓx
∆% Γx(x)

• !eb or e′b"bΓx
∆%

{
tt if !eb"bΓx = tt or !eb"bΓx = tt
ff otherwise

• !not eb"bΓx
∆%

{
tt if !eb"bΓx = ff
ff otherwise

– em〈e′m〉 = e′m

– seal(em, b) is defined inductively as follows:

• seal(tt, b)
∆% ∅
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• seal(ff, b)
∆% ∅

• seal(x : bool, b)
∆% b x : bool

• seal(eb or e′b, b)
∆% seal(eb, b) or seal(e′b, b)

• seal(not eb, b)
∆% not seal(eb, b)

Overview. As for the abstract syntax, the semantics is presented in four sub-
sections each treating one of the four syntactic categories in detail. An overview
of the denotation functions and associated symbols is given in Tables 5.1 and 5.2.
The environments are partial finite functions from appropriate sets of identifiers
to appropriate sets of values. For the rate function and module environments these
values are themselves functions mapping actual parameters to some other appro-
priate values. The binary string b is a parameter of some of the denotation func-
tions which pass it on to the seal and RS functions. Freshness of b is ensured by
appropriate extensions as denotation functions are computed. This follows the ap-
proach of CBS, except that in CBS, fresh names are computed bottom-up, whereas
we compute them top-down in order to avoid some unpleasant technicalities.

Table 5.1. Denotation functions

Function signature Denotation of
!ec"cΓc, b = vc Compartment expressions
!es"sΓc, Γs = vs

! Species expressions

!es+"sΓc, Γs, b = vs
! Extended species expressions

!ea"aΓc, Γs, Γa, vc = va Algebraic rate expressions
!em"mΓx = vm Modification site expressions
!P "pΓc, Γs, Γa, Γm, b, vc = {(Oi, Γsoi)} Programs
!D"dΓc, Γs, Γa, Γm, b = Γ ′

c, Γ
′
s , Γ

′
a, Γ

′
m, Γso Definitions

Table 5.2. Symbols in the denotation function signatures

Symbol Description
vc Compartment value
vs Species value
va Algebraic rate value
vm Modification site value
O Semantical object
b Binary string
Γc Compartment environment
Γs Species environment
Γa Algebraic rate function environment
Γx Variable environment
Γm Module environment
Γso Output species environment
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5.1 Compartments

Compartment values. We let nc range over a given set of compartment names
which is assumed to include the set of binary strings and contain the nil com-
partment name 1c. In contrast to compartment identifiers, which are language
constructs used for binding compartment values, compartment names are used
to uniquely and globally identify a compartment. Compartment values are of
the following form:

vc ::= Compartment value

| (nc, r, vc) Nested compartment

| - World compartment

We let Vc denote the set of all compartment values generated by this grammar.
Parent compartments vc are recorded as values rather than names, since names
do not generally identify a value uniquely. Specifically, 1c may occur in com-
partment values with different parents. Compartment volumes r represent the
volume of a compartment in the “biological sense” that the volume of a child
compartment does not count towards the volume of its enclosing parent.

The denotation function. A compartment environment is a partial finite
function of the form Γc(idc) = vc mapping compartment identifiers to com-
partment values. The denotation function for compartment expressions is of the
form:

!ec"cΓc, b = vc

and is defined inductively as follows:

– !new comp vol r inside ec"cΓc, b
∆% (b, r, vc) where

• vc
∆% !ec"cΓc, 0b

– !-"cΓc, b
∆% -

– !1c inside ec"cΓc, b
∆% (1c, 0.0, vc) where

• vc
∆% !ec"cΓc, b

– !idc"cΓc, b
∆% Γc(idc)

The denotation function is partial since it is not defined for identifiers which
do not have bindings in the given environment. New compartments are named
by the binary string argument to the denotation function. The denotation of
the parent compartment is computed recursively, but with a 0 prefixed to the
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fresh name, hence resulting in a new fresh name. Nil compartment values are
arbitrarily given the volume 0.0.

Well-typedness of compartment value lists. Compartments generally oc-
cur in the context of lists of other compartments, and we are only interested
in such lists which respect the hierarchy captured in compartment values. For-
mally, we say that a list (nc, r, vc) is well-typed if vc.i = (nc, r, vc).(i − 1) for
i ∈ 2 . . . |vc|. Any other lists, including those which contain the world compart-
ment in any other position than possibly the first, are ill-typed.

Compartment lists in turn occur in the context of sets of other compart-
ment lists, and we are only interested in such sets where all compartment lists
agree on parent compartments. To formalise this, we define a function of the
form parent(vc) = {vc

′
i} which gives the set of legal parent compartments of a

compartment list:

parent(vc)
∆%






Vc if vc = ε
{v′c} if |vc| > 0 and vc.1 = (nc, r, v′c)
∅ if |vc| > 0 and vc.1 = -

In words, the empty list of compartments can be put inside any compartment; a
non-empty list of compartments can only be put inside the compartment speci-
fied by the first element of the list unless this is the world compartment, in which
case it can be put nowhere. Formally, we then say that a set {vci

} is well-typed
if all vci

are well-typed and either parent(vci
) = ∅ for all i or

⋂
i parent(vci

) .= ∅.

The forest structure of well-typed sets of compartment value lists.
The motivation for defining well-typedness of sets of compartment value lists is
that only physically meaningful compartment hierarchies should be allowed in
programs. By this we mean that sets of compartment value lists should form a
forest structure, here a directed acyclic graph in which each node has at most
one parent.

Observe first that one can obtain a directed graph from a well-typed set of
compartment value lists in which nodes are compartment values and edges are
determined by left-to-right neighbourhood in lists. Formally, given a well-typed
set {vci

} we define G{vci
} ∆% (V, E) where

V
∆% {vci

.j}

E
∆% {(vci

.j, vci
.(j + 1))}

(Recall from our notational convention that the above definitions give indexed
sets where i is an index into the set of compartment value lists and j is an index
into list positions). We now show that these graphs are indeed forests:

Proposition 5.1. G{vci
} is a forest.
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Proof. By induction in |{vci
}|. In the following we additionally use a and b to

range over compartment values.

– Basis ({vci
} = ∅). Holds vacuously.

– Step ({vci
} ∪{ v′c}).

Acyclic: by the induction hypothesis, G{vci
} is acyclic. Also G{v′c} is acyclic,

for otherwise v′c would take the form vc
′
1
a vc

′
2
a vc

′
3
, and it follows from well-

typedness that the compartment value a must include itself as an ancestor;
this is impossible since compartment values are finite. Suppose towards a con-
tradiction that there is a cycle in G({vci

}∪{v′c}). This can then only arise from
a branch in G{vci

} of the form vc1
a vc2

b vc3
and v′c of the form vc

′
1
b vc

′
2
a vc

′
3
,

both of which are well-typed. This means that the compartment value a must
include b as an ancestor, and b in turn must include a as an ancestor. Hence a
must include itself as an ancestor. But this is impossible since compartment
values are finite.
Max one parent: by the induction hypothesis, each node in G{vci

} has
at most one parent. Also each node in G{v′c} has at most one parent, for
otherwise the graph would contain a cycle. Suppose towards a contradiction
that there is some node a in G({vci

} ∪{ v′c}) with two parents. This can
only arise from a branch in G{vci

} of the form vc1
b a vc2

and v′c of the form
vc

′
1
c a vc

′
2

with b .= c. But this is impossible since both lists are well-typed
and a can contain only a single parent.

Normal form of compartment value lists. Parent compartments in com-
partment values are necessary for type-checking in the general semantics, and
volumes are necessary in algebraic rate expressions. But from the view of any
concrete semantics, we are interested in a normal form of compartment lists in
which only compartment names are retained and in which the nil compartments
are removed. This normal form function is of the form nf(vc) = nc and is de-

fined as nf(nc, r, vc)
∆% nc.I where I

∆% {i | nc.i .= 1c} if vc is a normal form
compartment value list and is undefined otherwise. The graph arising from the
normal form of a set of compartment value lists is also a forest if all non-nil
compartment values have distinct compartment names, i.e. if the same non-nil
compartment name does not occur with different parents or with different vol-
umes. This is always the case for graphs in which compartment values arise from
compartment expressions.

5.2 Species

Species values. Recall from the abstract syntax for species expressions that
ξ is an annotation used to provide a match between actual and formal species
parameters. Recall also that ρ ranges over modification site types, that nm ranges
over modification site names, and that ns ranges over species names. Species
values are generated by the following grammar where we use Q ⊂fin N to range
over sets of list indices:
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vs ::= vι:ξ
us Species value

vus ::= vc[ns,ασ] Unboxed species value

ασ ::= {nm '→ (ρ, em)} Typed assignment

ι ::= {idc[ns] '→ (Q, ιm)} Species interface

ιm ::= {nm '→ n′
m} Modification site interface

An unboxed species value represents a possibly complex species by a list of located
atomic species, each of which is represented by a name and a typed assignment
mapping modification site names to pairs of modification types and expressions.
Species values add annotations and interfaces. Annotations are as in the abstract
syntax for species expressions: they are used for selecting the located atomic
species and modification sites in an actual species parameter which should be
mapped from the corresponding atomic species and modification sites in a formal
parameter. Interfaces capture this mapping from formals to actuals and can
hence be viewed as a product of module invocation. The need for a local mapping
from formals to actuals arises from our having nondeterministic species, where
different members of the set of values denoted by a nondeterministic actual
species parameter may require different mappings from formals to actuals as
demonstrated in Listing 3.7.

Interfaces map formal located names to pairs consisting of a set of position
indices in the associated unboxed species values and a modification site inter-
face. The sets of indices are used to cater for the general case of homo-multimers
in which there are multiple instances of some atomic species. Modification site
interfaces map formal modification site names to actual modification site names
in the unboxed species value. Interfaces may expose only a subset of species
indices in an unboxed species value, and for each exposed set of species indices,
the associated modification site interface may expose only a subset of the mod-
ification sites recorded in the unboxed species value. Hence interfaces give rise
to a notion of subtyping. For species values which have not been subjected to
module invocations, the interface exposes all atomic species and all modification
sites. Interfaces also give rise to a notion of parametric type since they provide
means of renaming atomic species and modification site names.

Examples of species values. Examples of some species values arising from
Listing 3.9 are shown informally in Figure 5.1 where we let f be the pair
(bool,ff) and t be the pair (bool, tt). Interfaces are depicted in the top part of
each figure, with solid lines representing the mapping from atomic species names
to indices, and dotted lines representing the embedded mapping between mod-
ification site names. Note that none of these examples are homo-multimers, so
interfaces map to singleton sets of indices. Unboxed species values are depicted
in the center part of each figure, and annotations are depicted at the bottom.

Figure 5.1a shows a complex species value before it has been subjected to any
module invocation, hence all primitive species and their modification sites are
exposed by the interface. The species names in the unboxed value are primed,
indicating that these are fresh. Figure 5.1b shows the species value after it has
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vus : [Ste5′, p !→ f], [Ste11′, p !→ f], [Ste7′, p !→ f], [Fus3′, p !→ f], [Gbg′], [Ste20′]

ι : [ Ste5, p ], [ Ste11, p ], [ Ste7, p ], [ Fus3, p ], [ Gbg ], [ Ste20 ]

ξ : ε

(a) The species value bound to e in the formation module, line 10.

vus : [Ste5′, p !→ f], [Ste11′, p !→ f], [Ste7′, p !→ f], [Fus3′, p !→ f], [Gbg′], [Ste20′]

ι : [ Ste5, p ], [ Ste11, p ], [ Ste7, p ], [ Fus3, p ]

ξ : ε

(b) The species value bound to the output species identifier link1 after invocation of
the formation module in line 19.

vus : [Ste5′, p !→ f], [Ste11′, p !→ f], [Ste7′, p !→ f], [Fus3′, p !→ f], [Gbg′], [Ste20′]

ι : [ Ste5, p ], [ Ste11, p ], [ Ste7, p ], [ Fus3, p ]

ξ : [Fus3, p], [Ste7, p], [Ste11, p]

(c) The species value resulting from evaluating the first actual parameter of the mapk
module invocation in line 20.

vus : [Ste5′, p !→ f], [Ste11′, p !→ f], [Ste7′, p !→ f], [Fus3′, p !→ f], [Gbg′], [Ste20′]

ι : [ k3, m ], [ k2, m ], [ k1, m ]

ξ : ε

(d) The species value bound to a in the body of the mapk cascade module in line 14.

vus : [Ste5′, p !→ f], [Ste11′, p !→ t], [Ste7′, p !→ t], [Fus3′, p !→ t], [Gbg′], [Ste20′]

ι : [ Ste5, p ], [ Ste11, p ], [ Ste7, p ], [ Fus3, p ]

ξ : ε

(e) The species value bound to the identifier link2, line 20, after invocation of the mapk
module.

Fig. 5.1. Examples of species values from Listing 3.9 represented in an informal graph-
ical notation
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been output from the formation module where Gbg and Ste20 have been removed
from the interface. In Figure 5.1c the annotation of the actual species parameter
of the mapk module has been recorded in the species value. Figure 5.1d shows
the species value after the interface has been updated based on the annotation in
Figure 5.1c and the corresponding formal annotation, ξ′ : [k1, m], [k2, m], [k3, m];
together these provide a mapping from e.g. k1 to Fus3, which is traced through
the interface in Figure 5.1c down to the fourth index of the unboxed species value.
The annotation has now served its purpose and is discarded. Finally, figure 5.1d
shows the species value where three atomic species have been phosphorylated,
and following output from the mapk module, the interface of this species value
has been restored to the interface of the original input species value in Figure
5.1d.

vus : [s′, p !→ f], [s′, p !→ t], [t′, p !→ f]

ι : [ s, m ]

ξ : ε

(a) A homomultimer species value with a single atomic species in its interface.

vus : [s′, p !→ f], [s′, p !→ t], [t′, p !→ f]

ι : [ s1, m ], [ s2, m ]

ξ : ε

(b) A homomultimer species value with two atomic species in its interface, mapping to
different occurrences of the same underlying fresh atomic species.

Fig. 5.2. Examples of homomultimer species values

A smaller example which illustrates how homomultimers can be represented
is shown in Figure 5.2a; here the same atomic species name, s, maps to two
occurrences of the same underlying fresh species name, s′. An interface may
however also map different located names to indices with the same located fresh
species names as shown in Figure 5.2b. This allows multiple instances of the
same atomic species within a homo-multimer to be distinguished, a capability
which a previous version of the language lacked.

Well-typedness of species values. A number of well-typedness conditions
apply to species values. For an unboxed species value vc[ns,ασ] we require that
the lists of compartment values are well-typed and hence form a forest structure.
We also require that assignments respect their associated type. These conditions
can be phrased formally as follows:
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1. {vc.i} is a well-typed set of compartment value lists.
2. ∀(ρ, em) ∈ im(ασ). em : ρ

For a species value vι:ξ
us we furthermore require that the interface maps to 1) non-

empty and 2) disjoint sets of indices; that 3) all indices in a set exist in the
unboxed species value and 4) contain species with identical located fresh names
and modification site names; that 5) the modification site interfaces map to
sites which exist in the assignments at the corresponding indices; that 6) the
annotation only mentions located species and sites which exist in the interface.
These conditions can be summarised formally as follows, where vc[ns,ασ] = vus,

idc[ns, nm] = ξ and, for ασ = {nm '→ (ρ, em)}, we let σ(ασ)
∆% {nm '→ ρ}.

1. ∀(Q, ιm) ∈ im(ι). |Q| > 0

2. ∀l, l′ ∈ dom(ι). l .= l′ ⇒ ind(ι(l)) ∩ ind(ι(l′)) = ∅ where ind(Q, ιm)
∆% Q

3. ∀(Q, ιm) ∈ im(ι). Q ⊆fin {1, . . . , |vus|}
4. ∀(Q, ιm) ∈ im(ι). ∀q, q′ ∈ Q. (vc[ns].q = vc[ns].q′) ∧ (σ(ασ .q) = (σ(ασ.q′))
5. ∀(Q, ιm) ∈ im(ι). ∀q ∈ Q. im(ιm) ⊆fin dom(ασ.q)
6. idc[ns] ∈ dom(ι) ∧ ∀(Q, ιm). (Q, ιm) = ι(idc[ns]) ⇒ {nm.i} ⊆fin dom(ιm)

The denotation function. We now turn to the semantics for species expres-
sions. A species environment is a partial finite function of the form Γs(ids) = vs

!

mapping species identifiers to lists of species values. The denotation function for
species expressions is of the form:

!es"sΓc,Γs = vs
!

and is parametric on compartment and species environments. The denotation
of a species is a list of species values. More than one species value may arise
because of nondeterminism, and we use lists rather than sets to cater for output
species in module parameters, as will be apparent in the semantics for programs;
however, for most purposes we may think of these lists as sets, hence the wavy
underline notation.

The definition of the denotation function for species expressions is given in
the following. In order to simplify notation, we write Γ instead of Γc,Γs for cases
where the environments are not used. Let us also reiterate the subtle notational
convention that given e.g. a list vus we write vus for vus.i, and that i is implicitly
assumed to be universally quantified over the indices of vus in definitions; see for
example the last 3 lines of the first case below.

– !idc[es]"sΓc,Γs
∆% vι:ξ

us
!!!

where

• vc
∆% Γc(idc)

• vus
ι1:ξ1
1

!!!!!!

∆% !es"sΓc,Γs
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• vus
∆%t vcvc1

[ns,ασ] where vc1
[ns,ασ]

∆% vus1

• ι ∆% {idcidc1
[ns] '→ ι1(idc1

[ns]) | idc1
[ns] ∈ dom(ι1)}

• ξ ∆% idcidc1
[ns, nm] where idc1

[ns, nm]
∆% ξ1

– !es1 − es2"sΓ
∆%t vs1

!!
×◦ vs2

!!
where

• vs1
!!

∆% !es1"sΓ

• vs2
!!

∆% !es2"sΓ

• vus
ι1:ξ1
1 ◦ vus

ι2:ξ2
2

∆% vι:ξ
us where

∗ vus
∆% vus1vus2

∗ ι(l) ∆%






ι1(l) if l ∈ dom(ι1) \ dom(ι2)
(A(Q2), ιm2) if l ∈ dom(ι2) \ dom(ι1)∧

(Q2, ιm2) = ι2(l)
(Q1 ∪A(Q2), ιm) if l ∈ dom(ι1) ∩ dom(ι2)∧

(Q1, ιm1) = ι1(l) ∧ (Q2, ιm2) = ι2(l)∧
ιm = ιm1 = ιm2

where A(Q) = {q + |vus1| | q ∈ Q}
∗ ξ ∆% ξ1 ξ2

– !es.idc[ns]"sΓ
∆% vι:ξ

us
!!!

where

• vus
ι1:ξ1
1

!!!!!!

∆% !es"sΓ

• (Q, ιm)
∆% ι1(idc[ns])

• vus
∆% vus1.Q

• ι ∆% {idc[ns] '→ ({1 . . . |Q|}, ιm)}
• ξ ∆% ξ1.{q | ∃nm. ξ1.q = (idc[ns, nm])}

– !es\idc[ns]"sΓ
∆% vι:ξ

us
!!!

where

• vus
ι1:ξ1
1

!!!!!!

∆% !es"sΓ

• (Q, ιm)
∆% ι1(idc[ns])

• vus
∆% vus1.({1 . . . |vus1|} \ Q)

• ι ∆% {l '→ (A(Q′), ιm) | l ∈ dom(ι1) \ {idc[ns]} ∧ (Q′, ιm) = ι1(l)}
where
∗ A(Q′)

∆% {q′ − |{q ∈ Q | q ≤ q′}| | q′ ∈ Q′}
• ξ ∆% ξ1.{q | ¬∃nm. ξ1.q = (idc[ns, nm])}
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– !es〈idc[ns,α]〉"sΓ
∆%t vc[n′

s,ασ
′′]ι:ξ

!!!!!!!!!!!!

where

• vc[n′
s,ασ

′]ι:ξ
!!!!!!!!!!!

∆% !es"sΓ

• (Q, ιm)
∆% ι(idc[ns])

• ασ
′′.q

∆%
{
ασ

′.q〈α ◦ (ιm−1)〉 if q ∈ Q

ασ
′.q otherwise

where

∗ ασ
′〈α′〉(nm)

∆%
{
ασ

′(nm)〈α′(nm)〉 if nm ∈ dom(ασ
′) ∩ dom(α′)

ασ
′(nm) if nm ∈ dom(ασ

′) \ dom(α′)
for all ασ

′, α′ and nm.

– !es1 or es2"sΓ
∆% vs1

!!
vs2
!!

where

• vs1
!!

∆% !es1"sΓ

• vs2
!!

∆% !es2"sΓ

– !es : ξ"sΓ
∆%t vι:ξ

us
!!!

where

• vι:ξ1
us

!!!!

∆% !es"sΓ

– !ids"sΓc,Γs
∆% Γs(ids)

– !0s"sΓ
∆% ε

!

The denotation function is partial because some species expressions do not result
in lists of well-typed species values or in environments which are functions, or
because some operations are undefined for some of the intermediate objects
which arise. Given suitable environments, we say that a species expression is
well-typed if its denotation is defined.

Explanation of the denotation function. In the case of located species,
the compartment value assigned to the compartment identifier is looked up in
the compartment environment and the species value denoting the nested species
expression is obtained recursively. The denotation of the located species expres-
sion is obtained from this species value by adding the compartment value to the
left of every located atomic species in the unboxed species value, by adding the
compartment identifier to the left of each list of compartment identifiers in the
domain of the interface, and by likewise adding the compartment identifier to
each list of compartments in the annotation. Note that the interface records the
compartment identifier rather than the compartment value. The expression is
well-typed when the compartment identifier is defined in the given environment
and when the resulting sets of compartment value lists are well-typed.
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The denotation of a composite species expression is given by a Cartesian prod-
uct of the denotations of the two operands. The corresponding pairing operation
on species values concatenates the two unboxed species values and composes the
interfaces in a manner that reflects this concatenation. The composed interface
essentially maps located names to the union of indices given by the individual
interfaces, with the twist that indices from the second interface are increased
by the length of the first unboxed species value. This adjustment of indices is
handled by an auxiliary function A. Annotations are composed simply by list
concatenation. The resulting species value is well-typed when the two compo-
nents agree on atomic species names and modification site interfaces for any
common members of their interface.

In the case of species selection, the resulting unboxed species value is obtained
by selecting the indices determined by the interface of the target species on the
given located name. The resulting interface maps the given located name to a
set of consecutive indices together with the original modification site interface.
The resulting annotation is obtained by selecting for those entries which contain
the given located name. The expression is well-typed when the located name is
in the domain of the interface, which is necessary for the list selection operations
to be well-defined. The case of species removal follows a similar idea, although
special care is needed for the appropriate adjustment of indices using an auxiliary
function A.

In the case of species update, the interface and annotation of the denotation
of the operand are preserved, and an updated unboxed species is obtained by
updating the assignments at the indices with the given located name. The mod-
ification site names in the given update expression are first renamed by function
composition with the inverse of the modification site interface, and the result is
given as an argument to an update operation on typed assignments which is de-
fined as an auxiliary function. Here, the assignment to modification sites which
are not mentioned in the update are preserved. For sites which are both in the
original assignment and in the update, the expression update function (which is
a parameter of the general semantics) is used; the update function is assumed
extended to pairs of modification site types and expressions. The expression is
well-typed if the located species name is in the domain of the target species in-
terface, if the domain of the update is in the domain of the relevant modification
site interface, and if the update respects the relevant species types.

The remaining cases are simpler. For nondeterministic species expressions,
the species value lists obtained from the denotations of the operands are simply
concatenated. The species annotation expression replaces the annotation in the
denotation of the nested species expression with a new annotation. For this to
be well-typed, the new annotation must mention only located names and sites
which exist in the domain of the interface of the operand, thus ensuring that
condition 6 of well-typedness for species values is satisfied. In the case of species
identifier expressions, the corresponding value is simply looked up in the species
environment which must be defined for the given identifier to be well-typed.
Finally, the nil species evaluates to a singleton list containing just the empty
species value.
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Extended species expressions. The denotation function for extended species
expressions is of the form:

!es+"sΓc,Γs, b = vs
!

It is parametric on compartment and species environments, and also on a binary
string b used to create fresh names for new species. Here is the definition:

– !es"s+Γc,Γs, b
∆% !es"sΓc,Γs

– !new ns,σ"s+Γc,Γs, b
∆% ε[b,ασ]

!!!!!!

ι:ε where

• ασ
∆% {nm '→ (ρ, default(ρ)) | nm ∈ dom(σ) ∧ ρ = σ(nm)}

• ι ∆% {ε[ns] '→ ({1}, {nmi '→ nmi}) where {nmi '→ ρi}
∆% σ

A new species expression evaluates to a singleton unboxed species with a fresh
species name given by the binary string parameter to the denotation function,
together with a typed assignment which extends the given type with default
modification expressions. The interface simply maps the given species name in
the empty list of compartment identifiers to the first and only index of the
unboxed species value, together with the identity interface on modification site
names.

Normal form species values. Interfaces, annotations and parent definitions in
compartment values are needed for determining well-typedness and for making
module invocation work, as detailed in the next subsection, but they are not
needed for normal form reactions. All that is needed here is a normal form:

vns ::= nc[ns,ασ]

of species values. The normal form function then takes the form nf(vs, vc) = vns

where vc is a list of compartment values which is required to go all the way from
the world compartment down to the compartment enclosing the species value.
The function is used in the semantics for programs and is applied to species
values in a located reaction. In the following definition we use the normal form
function for compartment value lists defined in the previous subsection:

nf(v′c[ns,ασ]ι,ξ, vc)
∆% nf(vc v′c)[ns,ασ]

The function is defined only when vc v′c is a well-typed list of compartment values.
Although retaining the full list of compartment names is unnecessary for some
concrete semantics such as Petri nets, this information may be relevant in other
cases. For example, it allows the compartment forest structure of programs to be
obtained through the general semantical framework by defining an appropriate
concrete semantics for representing and composing forests.
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Ground normal form species values. We introduce one further ground nor-
mal form of species values:

vgns ::= nc[ns, {nm '→ (ρ, vm)}]

Here modification sites map to pairs of modification types and values, rather
than to pairs of modification types and expressions with variables. Ground nor-
mal form species values are used in the semantics for programs in the case of
initial conditions; indeed, as described above, the general semantics is parame-
terised on a function of the form IS(vgns, r) = O for assigning semantical objects
to initial populations or concentrations of ground normal form species values.
Recall also that the general semantics is parameterised on a function of the form
!em"mΓx = vm which assigns values to modification site expressions given a
variable environment. This function can be extended in an evident manner to a
function from normal form species values to ground normal form species values;
this is needed when defining concrete semantics.

Further functions on species values. We define two functions on species
values which are required for the semantics of module invocations. For the first
function, the intuition is that one can update an interface ι1 given the associated
annotation ξ1 together with a second matching annotation ξ2 obtained from
a corresponding formal species parameter. The updated interface is then used
to access the species within the body of the module. An example of this is
shown in the transition from the species value in Figure 5.1c to that in Figure
5.1d. Formally, the function takes the form close(vs1, ξ2) = vs2 and is defined as
follows:

close(vι1:ξ1
us , ξ2)

∆% vι2:ε
us

where, for idc[ns, nm]1
∆% ξ1 and idc[ns, nm]2

∆% ξ2,

ι2
∆% {idc[ns]2.i '→ (Q, {nm2.i.j '→ ιm(nm1.i.j)}) | (Q, ιm) = ι1(idc[ns]1.i)}

The function is only defined if the lists ξ and ξ′ have the same length, and if all
of the embedded lists nm1.i and nm2.i also have the same length.

The second function enables one species value to take on the interface and
annotation of another species value. This is needed in the semantics for output
species in programs, and an example is shown in the transition of the species
value in Figure 5.1a to that in Figure 5.1b, and from the species value in Figure
5.1d to that in Figure 5.1e. Formally, we first need two supporting functions.
The first gives the located name of an unboxed species value at a given index,
and the second counts the number of previous occurrences of the located species
name at a given index:

lq(vus)
∆% idc[ns] where ∃ασ. idc[ns,ασ] = vus.q

cq(vus)
∆% |{q′ | lq(vus) = lq

′
(vus) ∧ q′ < q}|
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The function of interest then takes the form adapt(vs1, vs2) = vs3 and is defined
as follows:

adapt(vus
ι1:ξ1
1 , vus

ι2:ξ2
2 )

∆%t vus
ι3:ξ2
1

where, for all l ∈ dom(ι2):

(Q2, ιm2)
∆% ι2(l)

Q3
∆% {q | ∃q2 ∈ Q2. lq(vus1) = lq2(vus2) ∧ cq(vus1) = cq2(vus2)}

ι3(l)
∆% (Q3, ιm2)

Here the new interface ι3 maps a located species name l to the indices in vus1

which have the same located fresh name l′ as the indices in vus2 mapped from
l by ι2. If there are multiple choices of such indices, the index which results
in the same number of previous occurrences of the fresh name l′ in the two
unboxed species values is chosen. The function is defined only when the resulting
species value is well-typed, which is the case whenever the resulting sets of indices
are non-empty and modification site interfaces map to sites which exist in the
resulting unboxed species value.

Species value design choices. We end the treatment of species values with
some remarks about possible alternative representations. First note that we
choose to include modification types in species values. However, since new species
values are always created with fresh names and there are no expressions which
allow modification sites to change type, species values with identical names also
have identical modification types. Hence it would also be possible to maintain
modification types separately from species values as indeed was done in a pre-
vious version of the language [27], with the benefit of reduced redundancy. But
this approach would have the downside of cluttering the presentation of the
semantics with an additional environment needing to be maintained.

Alternative representations of species interfaces are also possible. We choose
for example to include compartment identifiers in the renaming of interfaces,
which allows compartments to differ between different members of a nonde-
terministic species in the same way that atomic species may differ. But inter-
faces could instead provide local mappings for only species and modification site
names, and require compartments to be evaluated externally. This would en-
sure that two species with the same location in their interface are indeed in the
same location. Such guarantees cannot be made when location is included in the
interface.

Another design choice involves the relatively relaxed conditions on interfaces.
For example, an interface may map a located name to indices in which the com-
partment structure is completely different, and different located names may map
to indices with the same species names. The latter allows the elements of a ho-
momultimer to be distinguished within the same species as demonstrated by the
earlier example in Figure 5.2b. This is the reason why unboxed species values are
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lists rather than multisets. We also anticipate that the ordering of atomic species
within a complex may be significant for future concrete semantics, although the
Petri net, ODE and CTMC concrete semantics disregard the ordering.

Annotations are maintained explicitly in species values. This incurs some over-
head in the semantics for species expressions since all operations must take an-
notations into account. Alternatively, the interface could be represented by lists
and the annotation could be captured by an appropriate ordering and restriction
of the interface. This would give a more compact semantics at the cost of reduced
transparency. It is however impossible for another reason pertaining to output
species: these can adopt the interface of actual species values at time of module
invocation using the adapt function, so interfaces of actual species parameters
must be preserved.

5.3 Programs

Normal form reactions. Recall that the general semantics is parameterised on
a structure (S, |S ,0S , RS , IS) and that RS is a function of the form RS(R, b) = O
assigning a semantical object to a reaction R, named b, in a suitable normal form.
More precisely, R takes the form:

n · vns ⇒vr n′ · v′ns if eb

where vns and v′ns are normal form species values as defined in the semantics for
species and vr is a rate value, i.e. a rate expression in which species expressions
have been evaluated to their normal forms, compartment expressions have been
replaced by their resulting volumes, and rate function invocations have been
evaluated. Rate values and algebraic rate values are generated by the grammar
in Table 5.3.

The denotation function for algebraic rate expressions is of the form:

!ea"aΓc,Γs,Γa, vc = va

Here Γa is an algebraic rate function environment of the form Γa(ida) = f
where f in turn is a function of the form f(vc, !!

vs , va, v′c) = va mapping actual
parameters, together with a list v′c of parent compartment values at time of
invocation, to algebraic rate values. The denotation function is defined below,
but with some standard cases for functions and arithmetic operators omitted. We
adopt a convention here and throughout where any parameters of a denotational
function that are not explicitly used by a given case are represented by Γ ; in the
second case below, for example, Γ hence represents the parameters Γs, Γa and
vc.

– !r"aΓ
∆% r

– !idc"aΓ,Γc
∆% r where

• (nc, r, vc)
∆% Γc(idc)
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Table 5.3. The abstract syntax for rate values

vr ::= Rate value

| {va} Mass-action rate

| [va] Algebraic rate

va ::= Algebraic rate value

| r Constant

| vns Population

| if eb then va else v′
a Conditional

| exp(va) | log(va) | sin(va) | cos(va) Functions

| va + v′
a | va - v′

a Arithmetic operators

| va × v′
a | va / v′

a | vaˆv′
a

– !es"aΓc,Γs,Γa, vc
∆% nf(vs

!
.1, vc) where

• vs
!

∆% !es"sΓc,Γs

if |vs
!
| = 1

– !ida(idc; es; ea)"aΓc,Γs,Γa, v′c
∆% Γa(ida)(vc, !!

vs, va, v′c) where

• vc
∆% Γc(idc)

• vs
!

∆% !es"sΓc,Γs

• va
∆% !ea"aΓc,Γs,Γa, v′c

if |vs
!
| = 1

– !if eb then ea else e′a"aΓ
∆% if eb then !ea"aΓ else !e′a"aΓ

– !exp(ea)"aΓ
∆% exp(!ea"aΓ )

– !ea + e′a"aΓ
∆% !ea"aΓ + !e′a"aΓ

The case of compartments is only defined for non-world compartment expres-
sions, reflecting our convention that the world compartment should only be used
as a parent in definitions of new compartments. The case of species is only de-
fined when the species expression does not contain nondeterminism because any
nondeterministic choice is forced in the appropriate derived forms of reactions. In
the case of algebraic rate function invocation, the semantic function is looked up
in the algebraic rate function environment and applied to the actual parameters
after these have been evaluated.

The remaining cases simply evaluate components recursively. Note in particu-
lar that conditionals are preserved in rate values, since a full evaluation requires
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an assignment to variables. As for normal form species expressions, this assign-
ment is left as a concern for the concrete semantics because certain semantical
objects, such as coloured Petri nets, have their own distinct way of handing
variables.

The denotation function for basic programs. The denotation function for
basic programs is of the form:

!P "pΓc,Γs,Γa,Γm, b, vc = {(Oi,Γsoi)}

Here Γm is a module environment of the form Γm(idp) = g where g in turn
is a function of the form g(vc, !!

vs, va, ids, b, vc) = {(Oi,Γsoi)} mapping actual
parameters to a set of pairs of semantical objects and output species environments
Γsoi which take the same form as species environments. Note that we obtain a
set of semantical objects and output species environments in order to account
for variation composition. The output species environments allows the formal
output species, defined inside a module, to become available in the program
following module invocation where they are bound to the corresponding actual
output species identifiers. Note also that g is parameterised on a fresh name b
and a list vc of parent compartments. The latter is because parent compartments
for a module are determined dynamically rather than statically.

The denotation function is defined below and relies on the function

δmn
∆% {0}n−1 1 {0}m−n

for constructing a binary string of length m with zeros everywhere except in the
nth position which holds a one.

– !n · es ⇒er n′ · e′s if eb"pΓc,Γs,Γa,Γm, b, vc
∆% {(O, ∅)} where

• vr
∆% !er"aΓc,Γs,Γa, vc

• vs
!

∆% !es"sΓc,Γs

• v′s
!

∆% !e′s"sΓc,Γs

• vns
∆% nf(vs

!
.1, vc)

• v′ns
∆% nf(v′s

!
.1, vc)

• O ∆% RS(n · vns ⇒vr n′ · v′ns if eb, b)
if |vs

!
| = |v′s

!
| = 1

– !0p"pΓ
∆% {(0S , ∅)}

– !P | P ′"pΓ, b
∆% {(Oi|SO′

j ,Γsoi〈Γ ′
soj〉)} where

• {(Oi,Γsoi)}
∆% !P "pΓ, 0b

• {(O′
j ,Γ

′
soj)}

∆% !P ′"pΓ, 1b
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– !P || P ′"pΓ, b
∆% {(Oi,Γsoi)} ∪{ (O′

j,Γ
′
soj)} where

• {(Oi,Γsoi)}
∆% !P "pΓ, 0b

• {(O′
j ,Γ

′
soj)}

∆% !P ′"pΓ, 1b

– !idc[P ]"pΓ,Γc, vc
∆% !P "pΓ,Γc, v′cvc where

• v′c
∆% Γc(idc)

– !idp(ec; es+; ea;out ids);P "pΓc,Γs,Γa,Γm, b, vc
∆% {(Oi|SO′

ji
,Γsoi〈Γ ′

soji
〉)}

where
• m

∆% |ec| + |es+| + 2

• bi
∆% δmi

• b′j
∆% δm|es+|+j

• b1 ∆% δm|es+|+|ec|+1

• b2 ∆% δm|es+|+|ec|+2

•
!!
vs.i

∆% !es+.i"sΓc,Γs, bib,

• vc.j
∆% !ec.j"cΓc, b′jb

• va.k
∆% !ea.k"aΓc,Γs,Γa, vc

• {(Oi,Γsoi)}
∆% Γm(idp)(vc, !!

vs, va, ids, vc, b1b)

• {{(O′
j ,Γ

′
soj)}i}

∆% !P "pΓc,Γs〈Γsoi〉,Γa,Γm, b2b

– !D ; P "pΓ, b, vc
∆% {(Oi,Γ ′

so〈Γsoi〉)} where

• Γ ′,Γ ′
so

∆% !D"dΓ, 0b

• {(Oi,Γsoi)}
∆% !P "pΓ ′, 1b, vc

– !ids = force(es) ; P "pΓc,Γs,Γa,Γm, b, vc
∆% {(Oj1 .1 |S . . . |S Ojm .m, ∅)}

where
• vs

!

∆% !es"sΓc,Γs

• {(Oj ,Γsoj)}.i
∆% !P "pΓc,Γs〈ids '→ vs

!
.i〉,Γa,Γm, δ

|vs! |

i b, vc

– !init es = r"pΓc,Γs,Γa,Γm, b, vc
∆% {(O, ∅)} where

• vs
!

∆% !es"sΓc,Γs

• vns
∆% nf(vs

!
.1, vc)

• O ∆% IS(vns, r)
if |vs

!
| = 1
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We furthermore define !P "p = !P "p∅, ∅, ∅, ∅, ε,- for programs which constitute
a complete model, i.e. which have no free identifiers.

Explanation of the denotation function. The case of reactions relies on the
given concrete semantic function for assigning a semantical object to the reac-
tion evaluated to its normal form. This normal form reaction is in turn obtained
by evaluating the species expressions to their normal forms, which involves com-
pleting the compartment hierarchy in species values, and by evaluating rate ex-
pressions to rate values. The latter assumes the denotation function for algebraic
rate expressions to be extended to rate expressions in an evident manner. There
is one explicit condition for well-typedness, namely that species expressions must
be deterministic, i.e. evaluate to singleton lists of species values. There is also
the implicit condition that the concrete semantic function must be defined for
the computed normal form reaction, which may e.g. fail if non-mass-action rates
are used in a CTMC semantics.

The denotation of the nil program is simply the singleton set with the nil
semantical object and the empty output species environment.

The denotation of a parallel composition is the pairwise composition of all
semantical objects in the denotations of the operands, together with the pairwise
update of output species environments from the first component with those of
the second. The fresh name prefixes are extended appropriately. This case is
well-typed when the composition operation, which is a parameter of the general
semantic function, is defined.

The denotation of a variation composition is similar to that of parallel com-
position but results in a union of semantical objects rather than a Cartesian
product.

In the case of located programs, the compartment identifier is looked up in
the compartment environment and appended to the list of compartment values
used to compute the denotation of the nested program. The denotation is defined
when the compartment identifier is in the given compartment environment and
when the resulting list of compartment values is well-typed.

The case of module invocation evaluates the actual parameters and passes the
resulting values as parameters to the function denoting the module as given by
the module environment. This function takes two additional parameters, namely
the parent compartments at time of invocation and a fresh name string. From
the function we obtain a set of semantical objects together with output species
environments with bindings for the actual output species parameters. The se-
quential program is then evaluated in the species environment updated with the
appropriate bindings for the output species. The result is the set of all pairwise
compositions of semantical objects from the module and from the sequential pro-
gram, together with the pairwise update of output species environments from the
module with those from the sequential program. Hence the sequential program
is treated as a parallel program with respect to semantical objects.

Special care must be taken to ensure the proper extension of fresh name
strings for evaluating compartment expressions, species expressions, the module
body and the sequential program. The crucial characteristic of these strings is
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that none is a postfix of another, ensuring that there is no way of extending one
string to match another. So far we have achieved this in the semantics of binary
operators by prefixing respectively a 0 and a 1 to the fresh name string. But here
we are faced with lists of expressions to be evaluated. We then achieve the desired
property by letting all prefixes be of length |es| + |es+| + 2, where the plus two
term accounts for the module body and for the sequential program. For the ith
compartment expression we choose a prefix in which the ith symbol is 1 and the
remaining symbols are 0s, and a similar construction is used for the remaining
prefixes. The denotation function for module invocation is defined when the
module identifier is in the given environment and the associated function is
defined for the given arguments.

The case of definitions relies on the denotation function for definitions to
obtain an updated collection of environments in which the sequential program
following the definition is evaluated.

The case of nondeterministic selection evaluates the species expression, and for
each resulting species value, it evaluates the sequential program. As for module
invocation, special care is needed to ensure that the fresh name strings are
extended appropriately. The resulting set of semantical objects consists of all
possible compositions of semantical objects associated with each species value,
and is hence effectively a Cartesian product. The output species environments
resulting from repeated evaluation of the sequential program are disregarded,
since there does not appear to be any meaningful way to reconcile them. They
all have the same domain, but generally differ in their images, since each is a
result of evaluating the same sequential program with different bindings for the
forced species.

Finally, the case of initial population or concentration definitions evaluates
the given species expression, obtains the corresponding normal form based on
the current parent compartments, and uses the concrete semantic function to
obtain a semantical object.

Derived programs. Next we define the denotation of derived forms in terms
of basic programs. We start by considering in-line species definitions which in-
tuitively give rise to a sequence of standard species definitions followed by the
reaction in which the in-line definitions have been removed and by the given se-
quential program; an example of this is given in Section 3.3. The formal presenta-
tion relies on an auxiliary definition extraction function of the form !es"ds = e′s, D
where es is a derived species expression as defined in the abstract syntax for de-
rived programs, e′s is a basic species expression and D is a list of extracted species
definitions. Selected cases of the definition are shown below; the remaining cases
are similar:

– !idc[es]"ds
∆% idc[e′s], D where

• e′s, D
∆% !es"ds
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– !es − e′s"ds
∆% e′′s − e′′′s , D D′ where

• e′′s , D
∆% !es"ds

• e′′′s , D′ ∆% !e′s"ds

– !ids"ds
∆% ids

– !es as ids"ds
∆% e′s, (ids = e′s)D where

• e′s, D
∆% !es"ds

The definition of L-R-equality preserving arrows, outlined informally in Section
3.5, relies on an auxiliary linearisation function for renaming identifiers in species
expressions in a linear manner. Informally, the renaming is such that all species
identifiers in the reactants become distinct, all species identifiers in the products
become distinct, and the ith occurrences of a given identifier in the original
reactants and products are given the same name.

The linearisation function is of the form lin(es, M)
∆% e′s, M

′ where M and
M ′ are multisets of species identifiers. Two key cases of the definition are given
below where, for i ∈ N, bs(i) is the binary string representation of i:

– lin(ids, M)
∆% bs(M(ids)) ids, M + ids

– lin(es − e′s, M)
∆% e′′s − e′′′s , M ′′ where

• e′′s , M ′ ∆% lin(es, M)
• e′′′s , M ′′ ∆% lin(e′s, M ′)

The base case prefixes an identifier with the binary string representation of
the number of the identifier’s previous occurrences, and adds the identifier to
the multiset. The case of complex formation evaluates the first expression in
the given multiset, resulting in a new multiset in which the second expression
is evaluated. The remaining cases which are not shown here simply evaluate
components recursively in the original multisets.

We extend the linearisation function to the form lin(es, M) = e′s, M
′ in order

to rename species identifiers in reactant and product lists:

– lin(ε, M)
∆% ε, M

– lin(ese′s, M)
∆% e′′s e′′′s , M ′′ where

• e′′s , M ′ ∆% lin(es, M)
• e′′′s , M ′′ ∆% lin(e′s, M ′)

We also extend it to the form lina(ea, M) = e′a, M
′ for algebraic rate expressions

with selected cases defined as follows:

– lina(r, M)
∆% r, M
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– lina(es, M)
∆% lin(es, M)

– lina(if eb then ea else e′a)
∆% if eb then e′′a else e′′′a , M ′′ where

• e′′a , M ′ ∆% lina(ea, M)
• e′′′a , M ′′ ∆% lina(e′a, M ′)

– lina(ea + e′a, M)
∆% e′′a + e′′′a , M ′′ where

• e′′a , M ′ ∆% lina(ea, M)
• e′′′a , M ′′ ∆% lina(e′a, M)

The derived forms are then defined by a denotation function of the form:

!P "dp = P ′

where P is a derived form program and P ′ is a basic program. In the following,
we assume a function of the form ;©D; P = P ′ which, given a list D of definitions
and a program P , gives a program P ′ in which the definitions in D have been
composed sequentially following the order of D and have scope P . We assume a
function of the form order(D) = D which orders a set D of definitions in some
arbitrary but definite order. The function FS gives the set of species identifiers
in a species expression and is defined along standard lines.

− !e′′s ∼ n · es A
er,e

′
r

2 n′ · e′s ∼ e′′′s if eb, e′b ; P "dp
∆%

!e′′s ∼ n · es A(A2)er n′ · e′s if eb ;0p"dp |

!e′′′s ∼ n′ · e′s A(A2)e′
r n · es if e′b ; P "dp

where
• A(⇔)

∆% ⇒
• A(↔)

∆% →
• A("!)

∆% !

− !e′′s ∼ n · es Aer n′ · e′s if eb ; P "dp
∆%

!1 · e′′s n · es Aer 1 · e′′s n′ · e′s if eb ; P "dp

−!n · es Aer n′ · e′s if eb ; P "dp
∆% ;©D D′; (!n · e′′s Aer n′ · e′′′s if eb"dp | P )

where
• e′′s , D = !es"ds

• e′′′s , D′ = !e′s"ds

− !n · es →er n′ · e′s if eb"dp
∆%

;©order{ids = force ids | ids ∈ FS(es, e
′
s)} ; n · es ⇒er n′ · e′s if eb

− !n · es !er n′ · e′s if eb"dp
∆%

;©order{bs(i) ids = force ids | ids ∈ dom(M) ∧ i ∈ M(ids)} ;

n · e′′s ⇒e′
r n′ · e′′′s if eb
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where
• e′r, M

′ ∆% lin(er, ∅)
• e′′s , M ′′ ∆% lin(es, ∅)

• e′′′s , M ′′′ ∆% lin(e′s, ∅)

• M(ids)
∆% {1 . . .max(M ′(ids), M ′′(ids), M ′′′(ids))}

The first case defines a reversible reaction as the parallel compositions of the
two reactions, one for each direction. The second case defines an enzymatic
reaction as a non-enzymatic reaction in which the enzymes are included in both
reactants and products and hence do not get consumed. Other choices, following
e.g. Michaelis-Menten kinetics, could also be made here.

The third case defines a reaction with in-line definitions as a reaction where
definitions have been extracted and put in scope of both the reaction and the
following program which is composed in parallel. Although conceptually simple,
we note that there are some artificial cases which may not expand to the expected
result, specifically when the same identifier is defined multiple times in a reaction
as in e.g. a−b as a + a−b as a => a−b; here all occurrences of a will be bound
to the same expression, namely that resulting from the second in-line definition.

The last two cases define nondeterministic reaction arrows in terms of the
force operator and the deterministic reaction arrow. Note that nondeterministic
species must be bound to identifiers in reactions in order to preserve the rela-
tionship between identical nondeterministic species in reactants and products.
Reactions with explicit nondeterminism are therefore ill-typed. Note also that
for reactions with the L-R equality-preserving arrow, a given identifier should
generally have the same number of occurrences in the reactants and products to
obtain meaningful results, although this condition is not explicitly enforced. In
particular, reactions such as 2 s −>> s−s and s + s −>> s−s are not equivalent
according to the above definition of derived forms.

The order of evaluation of derived forms is significant. Specifically, in-line
species definitions are expanded before nondeterministic selection. This ensures
that e.g. the program s + t −> s−t as a; P expands correctly, i.e. to:!
1 spec a = s−t ;
2 ( s = force s ;
3 t = force t ;
4 s + t => s−t
5 ) | P "
rather than to:!
1 spec a = s−t ;
2 s = force s ;
3 t = force t ;
4 ( s + t => s−t | P) "
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5.4 Definitions

The denotation function. The denotation function for definitions updates the
environments with bindings for a given definition. It takes the following form:

!D"dΓc,Γs,Γa,Γm, b = Γ ′
c,Γ

′
s ,Γ

′
a,Γ

′
m,Γso

The output species environment is created by the denotation function and is
always empty except for the case of species definitions, where it captures the
binding for the defined species. This is in contrast to the other environments
which are updated by the denotation function. Here is the definition:

– !ids = es+"dΓc,Γs,Γa,Γm, b
∆% Γc,Γs〈ids '→ vs

!
〉,Γa,Γm, {ids '→ vs

!
} where

• vs
!

∆% !es+"s+Γc,Γs, b

– !idc = ec"dΓ,Γc
∆% Γ,Γc〈idc '→ vc〉, ∅ where

• vc
∆% !ec"cΓc, b

– !ida(idc; ids : ξ; ida) = ea"dΓc,Γs,Γa,Γm, b
∆% Γc,Γs,Γa〈ida '→ f〉,Γm, ∅

where
• f(vc, !!

vs, va, vc
′)

∆% !ea"aΓ ′
c,Γ

′
s ,Γ

′
a, vc

′

• Γ ′
c

∆% Γc〈{idc '→ vc}〉
• Γ ′

s
∆% Γs〈{ids '→ close(vs

!
, ξ)}〉

• Γ ′
a

∆% Γa〈{ida '→ va}〉

− !idp(idc; ids : ξ; ida; out id′s : e′s) = P "dΓc,Γs,Γa,Γm, b
∆%

Γc,Γs,Γa,Γm〈idp '→ g〉, ∅
where
• g(vc, !!

vs, va, id′′s , b′, vc
′)

∆% {(Oi,Γsoi)}

• Γ ′
c

∆% Γc〈{idc '→ vc}〉
• Γ ′

s
∆% Γs〈{ids '→ seal(close(vs

!
, ξ), b)}〉

• Γ ′′
s

∆% Γs〈{ids '→ vs
!
}〉

• Γ ′
a

∆% Γa〈{ida '→ seal(va, b)}〉
• {(Oi,Γ ′

soi)}
∆% !P "pΓ ′

c,Γ
′
s ,Γ

′
a,Γm, b′, vc

′

• Γsoi
∆% {id′′s '→ adapt(v′s

!
, v′′s

!!
)} where

∗ v′s
!

∆% Γ ′
soi(id

′
s)

∗ v′′s
!!

, ∅ = !e′s"sΓ ′
c,Γ

′′
s
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Explanation of the denotation function. The cases for species and compart-
ment definitions are straightforward since they rely on the respective denotation
functions. The case of rate function definitions updates the rate function envi-
ronment with a new binding to a function f from actual parameters and parent
compartments to an algebraic rate value. This algebraic rate value is computed
in the environments at time of definition updated with bindings for the actual
parameters, and with the parent compartments at time of invocation. The inter-
faces of the actual species parameters are updated based on the annotations of
the corresponding formal parameters using the close function defined in Subsec-
tion 5.2 which here is assumed extended to lists of species values. The function
f is only defined when the number of actual and formal parameters match, and
when the species interface updates result in well-typed species values.

The case of module definitions updates the module environment with a new
binding to a function from actual parameters, a fresh name string and parent com-
partments, to a set of semantical objects and species output environments. The se-
mantical objects are computed in the environments at time of definition updated
with bindings for actual parameters, and with the fresh name string and parent
compartments at time of invocation. As for algebraic rate expressions, the inter-
faces of actual species values are updated. But an additional step is taken to confine
species values to a namespace given by the fresh name string at time of definition,
ensuring that e.g. variables in actual parameters are not captured inside the mod-
ule. This is done using the seal function on modification site expressions, which is
given as a parameter of the general semantics; we assume this to be extended ap-
propriately to lists of species values and also to algebraic rate values. Finally, the
resulting output species environment is given by a mapping from actual output
species identifiers to the values of the corresponding formal output species iden-
tifiers as recorded in the output species environment of the body, but with inter-
faces updated using the adapt function defined in Subsection 5.2. The function is
assumed extended to pairs of species value lists of the same length. Hence the up-
dates are carried out in a pair-wisemanner by matching up corresponding positions
in the lists constituting the nondeterministic species values; this is the reason for
having nondeterministic species represented by lists rather than sets.

6 Some Concrete Semantics

Practical applications of LBS require specific choices of concrete semantics to
be made, and any questions of language expressiveness must also be addressed
in the context of a specific concrete semantics. This section therefore gives four
examples of concrete semantics, namely: basic Petri nets; coloured Petri nets;
ordinary differential equations; and continuous time Markov chains. These follow
the ideas in [31], but are adapted to adhere to the general semantics of LBS.

6.1 Preliminaries

The general semantics preserves variables in species modification sites because
variables can be exploited by some concrete semantics. But for other concrete
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semantics this is not the case, and we can instead parameterise the general se-
mantic function on a structure (S, |S ,0S , GS , IS) which is the same as before,
except that GS is a function assigning semantical objects to named ground nor-
mal form reactions. These are normal form reactions in which expressions have
been appropriately evaluated based on a variable environment: species values
have been evaluated to ground normal form species values as defined previously;
rate values have been evaluated to obtain ground rate values defined below;
and reaction conditionals are omitted because reactions with conditionals which
evaluate to ff are simply discarded. We therefore start by defining the general
assignment RS of semantical objects to named normal form reactions in terms of
an assignment GS to named ground normal form reactions, allowing a concrete
semantics to be defined in terms of either of these.

Ground normal form reactions. Ground algebraic rate values differ from
algebraic rate values in that species values are replaced by ground normal form
species values and conditionals are not included. Ground rate values contain
ground algebraic rate values rather than algebraic rate values, and for the mass-
action case, these must be constants. The formal definition is given by the gram-
mar in Table 6.1.

Table 6.1. The abstract syntax for ground rate values

vgr ::= Ground rate value

| {r} Mass-action rate constant

| [vga] Ground algebraic rate value

vga ::= Ground algebraic rate value

| r Constant

| vgns Population

| exp(vga) | log(vga) | sin(vga) | cos(vga) Functions

| vga + v′
ga | vga - v′

ga Arithmetic operators

| vga × v′
ga | vga / v′

ga | vgaˆv′
ga

A denotation function of the form !va"aΓx = vga assigning ground algebraic
rate values to algebraic rate values, given a variable environment, is defined
below. Only selected cases for functions and arithmetic operators are shown
since the remaining cases are similar.

– !r"aΓx
∆% r

– !vns"aΓx
∆% !vns"mΓx
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– !if eb then va else v′a"aΓx
∆%

{
!va"aΓx if !eb"bΓx = tt
!v′a"aΓx otherwise

– !exp(va)"aΓx
∆% exp(!va"aΓx)

– !va + v′a"aΓx
∆% !va"aΓx + !v′a"aΓx

In the case of normal form species values we assume the denotation function for
modification site expressions extended in an evident manner.

Ground normal form reactions are then of the form:

G ::= n · vgns ⇒vgr n′ · v′gns

The general semantics in terms of ground normal form reactions. The
idea in the following construction is to obtain a ground normal form reaction
for each possible variable environment associated with a normal form reaction,
then get the semantical object of each ground normal form reaction, and finally
apply the parallel composition operator to these objects. We therefore start by
defining a function of the form RS(R, b,Γx) = O assigning a semantical object
O to a normal form reaction R, named b, given a variable environment Γx:

RS(n · vns ⇒vr n′ · v′ns if eb, b,Γx)
∆%

{
GS(n · !vns"mΓx ⇒!vr"aΓx n′ · !v′ns"mΓx, b) if !eb"bΓx = tt
0S otherwise

If the conditional evaluates to ff , the reaction is assigned the nil object, and
otherwise the assignment relies on the function GS for assigning a semantical
object to the ground normal form of the reaction. Again we assume the deno-
tation function on modification site expressions to be extended to normal form
species values in an evident manner. We also assume the denotation function for
ground algebraic rate values to be extended to ground rate values in an evident
manner; note that this function is only defined when ground algebraic rate values
which are used as mass-action rates evaluate to constants.

The set of all variable environments associated with a normal form reaction
is defined as follows, using the standard notation for dependent sets:

Val(R)
∆%

∏

(x:ρ)∈FV(R)

!ρ"t

We here assume the variable function FV on modification site expressions to be
extended to reactions in an evident manner. Observe that variable environments
are restricted to only assign values of given types to variables, and that for finite
types, we get a finite set of variable environments.

In order to construct appropriate binary strings for naming reactions, we
assume an arbitrary but fixed total ordering ≤ on variable environments Γx.
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In practise this can for example be obtained from a lexicographical ordering on
variables together with a suitable ordering on values. We assume an operator |S©
which gives the parallel composition in some definite order of its operands. Recall
also that the function δmi gives a binary string of length m with 0s everywhere
except for the ith entry. The assignment RS can then be defined in terms of GS

as follows:

RS(R, b)
∆%

|S©{RS(R, δmi b,Γx) | Γx ∈ Val(R)∧i = |{Γ ′
x ∈ Val(R) | Γ ′

x ≤ Γx}|∧m = |Val(R)|}

6.2 A Petri Net Semantics

Petri nets. We already encountered a graphical representation of a Petri net in
Figure 2.2. Places, depicted as circles, represent species, and transitions, depicted
as rectangles, represent reactions. In the figure we considered only atomic species
with no modification sites, but in the more general case, a separate place is
used to represent each modification state of a complex species. Flow functions,
depicted as arcs between places and transitions, are used to identify the reactants
and products of a reaction. In the general case, arcs are labelled with integers
representing stoichiometry. Finally, a marking defines the state of a Petri net
by the number of tokens, representing individual molecules, contained in each
place. For our purposes, tokens are multiset versions of ground normal form
species values.

The formal definition of our Petri nets is given below, where Vgns is the set of
all ground normal form species values vgns.

Definition 1. An LBS-Petri net P is a tuple (S, T, F in, F out, M0) where

– S ⊂fin {MS(vgns) | vgns ∈ Vgns} is the set of places.
– T ⊂fin {0, 1}∗ is the set of transitions.
– F in, F out : T × S → N are the flow-in and flow-out functions, respectively.
– M0 ∈ MS(S) is the initial marking

Recall in the above definition that MS(x) gives the multiset representation of
a list x. The set of places hence contains multiset-representations of normal
form species values, reflecting that the ordering of atomic species within normal
form species values is insignificant, i.e. that the complex formation operator
is commutative. Transitions are binary strings since these are used to name
reactions in the general semantics. We use the notation SP to refer to the places
S of Petri net P, and similarly for the other Petri net elements. The set of all
Petri nets is denoted by P .

The qualitative semantics of Petri nets. The qualitative semantics deter-
mines how the marking of a Petri net changes over discrete time. Informally,
this can be illustrated by playing the token game: a transition can fire whenever
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all its input places contain at least the number of tokens specified by the corre-
sponding arc weights; when a transition fires, the number of tokens specified by
arc weights are consumed from the input places and added to the output places.

Formally, the set of all markings of a Petri net is the set of multisets of places:

M(P)
∆% MS(SP)

The behaviour of a Petri net is defined in terms of a transition relation which
captures all possible moves in the token game.

Definition 2. Let P be a Petri net, let X ∈ MS(TP) and let M, N ∈ M(P).
Then define M

X−→ N iff

1. M ≥
∑

t∈X F in
P (t)

2. N = M +
∑

t∈X F out
P (t)− F in

P (t)

Note that a flow function applied to only one argument, a transition, is interpreted
as a function on places, here a marking. The arithmetic operations and relations
are understood to be extended to markings in the expected way, e.g. M ≥ M ′ iff
M(s) ≥ M ′(s) for all s. Condition 1 hence states that the marking M must have
sufficient tokens for transitions in X to fire, and condition 2 states that N is the
marking resulting from firing the transitions from X in marking M .

The concrete Petri net semantics of LBS

Definition 3. The concrete semantics for LBS in terms of Petri nets is given
by the tuple (P , |P ,0P , GP , IP ) where

– P1 |P P2
∆% P where

• SP
∆% SP1 ∪ SP2

• TP
∆% TP1 ∪ TP2

• F io
P (t, s)

∆%






F io
P1

(t, s) if t ∈ TP1 ∧ s ∈ SP1

F io
P2

(t, s) if t ∈ TP2 ∧ s ∈ SP2

0 otherwise
for io ∈ {in, out}

• M0
P

∆% M0
P1

+ M0
P2

if TP1 ∩ TP2 = ∅

– 0P
∆% (∅, ∅, ∅, ∅, ∅)

– GP(n · vgns ⇒vgr n′ · v′gns, t)
∆% P where

• SP
∆% {MS(vgns.i)} ∪{ MS(v′gns.j)}

• TP
∆% {t}

• F in
P (t, s)

∆%
∑

MS(vgns.i)=s n.i
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• F out
P (t, s)

∆%
∑

MS(v′
gns.j)=s n′.j

• M0
P

∆% ∅

– IP(vgns, n)
∆% ({MS(vgns)}, ∅, ∅, ∅, {MS(vgns) '→ n})

The function IP is only defined for natural-numbered initial populations, not for
real-numbered initial concentrations, because markings in Petri nets are discrete.
The parallel composition operator is only defined for Petri nets with disjoint sets
of transitions. The transition sets of two Petri nets resulting from the general
semantics are however always disjoint because reactions have fresh names. This
is in contrast to CBS where a bottom-up approach is taken: the semantics for
parallel composition renames transitions before composition.

6.3 A Coloured Petri Net Semantics

Coloured Petri nets (CPNs) allow a single place to represent a species in any of
its possible states of modification. CPNs hence allow for a compact description
of models and can potentially lead to more efficient simulation and analysis, and
in contrast to standard Petri nets, they are capable of representing species with
infinite modification site types such as strings.

Coloured Petri nets. Places in CPNs are assigned types (or colour), and
tokens are structured values of the type assigned to the place in which they reside.
In our case, the type of a place is given by a multiset of located atomic species
names and their modification site types, hence representing a complex species
independently of its state of modification. As for standard Petri nets, tokens
are multiset versions of ground normal form species values. But in contrast to
standard Petri nets, arcs are equipped with multiset representations of normal
form species values which are not necessarily ground. This enables a transition
to operate selectively on species in a given state of modification, or indeed to
ignore the state of certain sites. Boolean guards with variables allow transitions
to assert further control over tokens.

We give a definition of coloured Petri nets which is tailored to our needs
and which avoids some details of the standard definition [18]. For example, the
standard definition distinguishes between place names and place types, but for
our purposes a place is identified uniquely by its type. Our definition can however
be recast in standard terms, as would be necessary for exploiting existing CPN
tools.

Formally, we define a species type τ as follows:

τ ::=
∑

i

nci
[nsi,σi]

and we let Types be the set of all species types. We define a function of the form
type(vns) = τ giving the type of a normal form species value:

type(nc[ns,ασ])
∆%

∑

i

nci
[nsi,σi]
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where σi is αi in which each pair of the image has been projected to the type com-
ponent. We assume a similar definition for a function of the form type(vgns) = τ
for ground normal form species values.

The formal definition of our coloured Petri nets is given below, where Ebool

is set of boolean expressions eb.
Definition 4. An LBS-coloured Petri net C is a tuple (S, T, F in, F out, B, M0)
where
– S ⊂fin Types is a finite set of places.
– T ⊂fin {0, 1}∗ is a finite set of transitions.
– F in, F out :

∏
(t,τ)∈T×S MS({MS(vns) | type(vns) = τ}) are the flow-in and

flow-out functions, respectively.
– B : T → Ebool is the transition guard function.
– M0 :

∏
τ∈S MS({MS(vgns) | type(vgns) = τ}) is the initial marking.

As for basic Petri nets, we use the notation SC to refer to the places S of a
coloured Petri net C, and similarly for the other elements. The set of all coloured
Petri nets is denoted by C.

The qualitative semantics of coloured Petri nets. The set of all markings
M(C) of a coloured Petri net C is defined as follows:

M(C)
∆%

∏

τ∈SC

MS({MS(vgns) | type(vgns) = τ})

We furthermore let

VEX
∆% {Γx | dom(Γx) = X}

be the set of variable environments with domain X , and we let

FV(t,C)
∆% FV(F in

C (t)) ∪ FV(F out
C (t)) ∪ FV(BC(t))

be the set of typed variables associated with a transition t in CPN C; here FV
is assumed extended in an evident manner. The behaviour of a coloured Petri
net is defined in terms of a transition relation as follows.
Definition 5. Let C be a coloured Petri net, let X ∈ MS(

∏
t∈TC

VEFV(t,C)) and

let M, N ∈M(C). Then define M
X−→ N iff

1. M ≥
∑

(t,Γx)∈X!F in
C (t)"mΓx

2. N = M +
∑

(t,Γx)∈X!F out
C (t)"mΓx − !F in

C (t)"mΓx

3.
∧

(t,Γx)∈X!BC(t)"mΓx = tt

Recall that the modification site denotation function is a parameter of the species
semantics, and in the above definition we assume this function to be extended
from modification site expressions to normal form species values and to markings
in an evident manner. A flow function applied to a transition is here interpreted
as a marking, i.e. a mapping from places to multisets, and the multiset operations
are assumed to be appropriately extended. Conditions 1 and 2 then correspond to
conditions 1 and 2 in the qualitative semantics of standard Petri nets. Condition
3 states that the guards of all fired transitions must evaluate to tt.
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The concrete coloured Petri net semantics of LBS

Definition 6. The concrete semantics for LBS in terms of coloured Petri nets
is given by the tuple (C, |C ,0C , RC , IC) where

– C1 |C C2
∆% C where

• SC
∆% SC1 ∪ SC2

• TC
∆% TC1 ∪ TC2

• F io
C (t, τ)

∆%






F io
C1

(t, τ) if t ∈ TC1 ∧ τ ∈ SC1

F io
C2

(t, τ) if t ∈ TC2 ∧ τ ∈ SC2

∅ otherwise
for io ∈ {in, out}

• BC(t)
∆%

{
BC1(t) if t ∈ TC1

BC2(t) if t ∈ TC2

• M0
C

∆% M0
C1

+ M0
C2

if TC1 ∩ TC2 = ∅

– 0C
∆% (∅, ∅, ∅, ∅, ∅, ∅)

– RC(n · vns ⇒vr n′ · v′ns if eb, t)
∆% C where

• SC
∆% {type(vns.i)} ∪{ type(v′ns.j)}

• TC
∆% {t}

• F in
C (t, τ)

∆%
∑

type(vns.i)=τ n.i · MS(vns.i)

• F out
C (t, τ)

∆%
∑

type(v′
ns.j)=τ n′.j · MS(v′ns.j)

• BC(t)
∆% eb

• M0
C

∆% ∅

– IC(vns, n)
∆% ({type(vns)}, ∅, ∅, ∅, ∅, {MS(vns) '→ n})

The definition is similar to that for standard Petri nets, but differs in the inclu-
sion of guards and in the definition of the reaction and initial condition functions
where species types and normal form values are used rather than ground values.

6.4 An ODE Semantics

The Petri net semantics presented above are qualitative in that they do not
take reaction rates into account. In this section we give a quantitative semantics
in terms of ordinary differential equations (ODEs). ODEs are continuous since
they define system dynamics in terms of species concentrations. They are also
deterministic since they, given initial conditions, uniquely determine the state
of a system at any point of time in terms of species concentrations.
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Ordinary differential equations. A set of ODEs specifies how the concen-
tration [si] of a species si changes over time and is traditionally written in the
following notation:

d[s1] = p1

...
d[sn] = pn

where the pi are real polynomials over [si]. The initial conditions of a set of
ODEs are specified by the concentration of each species at time 0.

Formally, let (Pol(X), +, ·) be the ring of real polynomials over variables in the
set X . We then define the structure of ODEs with initial conditions as follows:

Definition 7. A structure D of LBS-ODEs with initial conditions is given by a
tuple (X,P, I) where

– X ⊂fin {MS(vgns) | vgns ∈ Vgns} is the set of variables.
– P : X → Pol(X) is the assignment of polynomials to variables.
– I : X → R is the initial condition.

The set of all structures of ODEs with initial conditions is denoted by D, and
we denote e.g. X in D by XD. Although non-linear ODEs cannot generally be
solved in closed form, numerical integration methods are available and described
in standard text books [1].

The ordinary differential equation semantics of LBS. Given two total
functions f1 : X1 → Y and f2 : X2 → Y with a binary operator + on the
elements of Y , we define f1 + f2 : X1 ∪X2 → Y as follows:

(f1 + f2)(x)
∆%






f1(x) if x ∈ X1 \ X2

f2(x) if x ∈ X2 \ X1

f1(x) + f2(x) if x ∈ X1 ∩X2

The semantics of LBS in terms of ODEs is defined below.

Definition 8. The concrete semantics for LBS in terms of ODEs is given by
the tuple (D, |D ,0D, GD, ID) where

– D1 |D D2
∆% D where

• XD
∆% XD1 ∪ XD2

• PD
∆% PD1 + PD2

• ID
∆% ID1 + ID2

– 0D
∆% (∅, ∅, ∅)
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– GD(n · vgns ⇒vgr n′ · v′gns, b)
∆% D where

• XD
∆% {MS(vgns.i)} ∪{ MS(v′gns.j)}

• PD(s)
∆%

{
(N(s)−M(s)) · r ·

∏
i(MS(vgns.i))n.i if vgr = {r}

vga if vgr = [vga]
where
∗ M(s)

∆%
∑

MS(vgns.i)=s n.i

∗ N(s)
∆%

∑
MS(v′

gns.j)=s n′.j

• ID(s) = 0.

– IV(vgns, r)
∆% ({s}, {s '→ 0}, {s '→ r}) where

• s
∆% MS(vgns)

In the case of reactions, rate expressions are constructed from mass-action rate
constants in the standard way [36]. Note that the assignment to reactions is only
defined when mass-action rates are constants.

6.5 A CTMC Semantics

We now give another quantitative semantics in terms of continuous time Markov
chains (CTMCs). In contrast to ODEs, CTMCs are discrete since they describe
the system state in terms of species populations rather than concentrations, and
they give rise to stochastic behaviour.

Continuous time Markov chains. The state of a CTMC corresponds to a
marking of a Petri net and is hence given by a multiset of ground normal form
species values in their multiset form. State transitions are described directly in
terms of a transition rate matrix. Here is the formal definition:

Definition 9. An LBS-continuous time Markov chain with initial state V is a
tuple (X,Q, I) where

1. X ⊂fin MS({MS(vgns) | vgns ∈ Vgns}) is the set of states.
2. Q : X2 → R is the transition rate matrix satisfying

(a) Q(M, N) ≥ 0 for all M, N ∈ X with M .= N .
(b) Q(M, M) = −

∑
M (=N Q(M, N).

3. I ∈ X is the initial state.

The set of all CTMCs with initial state is denoted by V , and we denote e.g. X
in V by XV. We refer to the literature [36] for further details on CTMCs and
their associated simulation methods.
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The continuous time Markov chain semantics of LBS

Definition 10. The concrete semantics for LBS in terms of CTMCs is given
by the tuple (V , |V ,0V , GV , IV) where

– V1 |V V2
∆% V where

• XV
∆% {M + N | M ∈ XV1 ∧N ∈ XV2}

• QV
∆% QV1

+ QV2

• IV
∆% IV1 + IV2

– 0V
∆% (∅, ∅, ∅)

– GV(n · vgns ⇒{r} n′ · v′gns, t)
∆% V where

• XV
∆% MS({MS(vgns.i)} ∪{ MS(v′gns.j)})

• QV(M ′, N ′)
∆%






r
(

M ′

M

)
if (M, N) < (M ′, N ′) ∧M .= N

−r
(M ′

M

)
if M ′ = N ′ ∧M .= N ∧M ′ ≥ M

0 otherwise
where
∗ M(s)

∆%
∑

MS(vgns.i)=s n.i

∗ N(s)
∆%

∑
MS(v′

gns.j)=s n′.j

∗
(M ′

M

) ∆%
∏

s∈dom(M ′)

(M ′(s)
M(s)

)

∗ (M, N) < (M ′, N ′) iff ∃L. M ′ = M + L ∧N ′ = N + L
• IV(s) = 0

– IV(vgns, n)
∆% V where

• XV
∆% MS({MS(vgns)})

• QV(M, N)
∆% 0

• IV({MS(vgns)}) = n

In the case of reactions,
(x

y

)
is the binomial coefficient and state transition rates

are constructed from mass-action constants in the standard way [36]. Note that
the reaction assignment is only defined when mass-action rates are used and, as
in the ODE semantics, mass-action rates must be constants.

7 Future Directions

Combinatorial explosion. Whether the explicit modelling of “empty context”
reactions (i.e. where species are listed in fully specified complexes) is desirable
or not depends on the particular system under study. Systems which exhibit low
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or moderate levels of combinatorial complexity are amenable to modelling in
LBS and can benefit from its simplicity and the large body of tools and tech-
niques available for the analysis and simulation of Petri nets, ODEs and CTMCs.
Although nondeterminism provides means of handling moderately combinatorial
systems in a compact manner, one would like a more refined approach to nonde-
terminism in order to control which members of nondeterministic species interact
in reactions.

Systems which are characterised by high levels of combinatorial complexity
may be better modelled in e.g. rule-based languages such as κ and BioNetGen.
As mentioned in the introduction, there is however scope for supporting κ and
BioNetGen within the general framework of LBS through an appropriate choice
of concrete semantics and modification site types. This may furthermore open
possibilities for exploiting modularity in the κ analysis methods.

Graphical representations. Although LBS has been designed with ease of use
in mind, it is still a textual language that may not be easily accessible to some
biologists. Graphical representations of LBS models can ameliorate this problem.
Specifically, tools for visualising LBS programs and, conversely, for generating
LBS programs from visual diagrams, would be useful. These tools might follow
the Systems Biology Graphical Notation (SBGN) [21].

A static semantics. The denotation functions impose certain constraints on
their arguments. The resulting notion of well-typedness is a dynamical one: the
denotation of a module is a function, and whether or not this function is defined
for a given set of actual parameters is determined by applying the function to
these parameters. This approach falls short in two respects. Firstly, the func-
tion may not be defined for any inputs at all. In this case it is the module
definition that should be reported as ill-typed, rather than the module invo-
cation. Secondly, well-typedness of a module invocation should be determined
based on the actual parameters and an appropriate interface of the module,
rather than by attempting to translate the module implementation under a
given set of actual parameters. It may be that these limitations can be ad-
dressed through a dedicated type system along the lines of a previous version of
LBS [27].

Synthetic biology. Whether natural biological system are amenable to exten-
sive modular decomposition remains an open question that must be addressed
through further modelling exercises. In the setting of synthetic biology, however,
systems are designed rather than modelled, so it should be possible to exploit
modularity fully there. Languages with dedicated features for synthetic biology
are starting to emerge, including the previously mentioned Antimony language
as well as GenoCad [2, 3] and the language for Genetic Engineering of Cells
(GEC) [26]. GEC has a notion of parallel and located reactions which serve as
constraints for deducing appropriate genetic parts for constructing genes, and it
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also has a basic notion of modularity. It may then be of interest to add some
of the more advanced features of LBS for e.g. structured species and subtyping
into an extension of GEC, or conversely to add the support of GEC for genetic
design into an extension of LBS.
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