Abstract
This paper introduces a Language for Biochemical Systems (LBS) which combines rule-based approaches to modelling with modularity. It is based on the Calculus of Biochemical Systems (CBS) which affords modular descriptions of metabolic, signalling and regulatory networks in terms of reactions between modified complexes, occurring concurrently inside a hierarchy of compartments and with possible cross-compartment interactions and transport. Additional features of LBS, targeted towards practical and large-scale applications, include species expressions for manipulating large complexes in a concise manner, parameterised modules with a notion of subtyping for writing reusable modules, and nondeterminism for handling combinatorial explosion. These features are demonstrated through examples. A formal specification of LBS is then given through an abstract syntax and a general semantics which is parametric on a structure pertaining to the specific choice of target semantical objects. Examples of such structures for the specific cases of Petri nets, coloured Petri nets, ODEs and continuous time Markov chains are also given.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blanchard, P., Devaney, R.L., Hall, G.R.: Differential Equations. Brooks/Cole (2002)
Cai, Y., Hartnett, B., Gustafsson, C., Peccoud, J.: A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics 23(20), 2760–2767 (2007)
Cai, Y., Lux, M.W., Adam, L., Peccoud, J.: Modeling structure-function relationships in synthetic DNA sequences using attribute grammars. PLoS Comput. Biol. 5(10), e1000529 (2009)
Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. Trans. on Comput. Syst. Biol. VII 4230, 1–23 (2006)
Cardelli, L.: Brane calculi. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)
Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine BIOCHAM. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)
Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol. 5(239) (2009)
Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA for biochemical networks. Electron. Notes Theor. Comput. Sci. 194(3), 103–117 (2008)
Danos, V.: Agile modelling of cellular signalling. In: Computation in Modern Science and Engineering, vol. 2, Part A 963, pp. 611–614 (2007)
Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling and model perturbation. TCSB 5750(11), 116–137 (2009)
Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)
Dematté, L., Priami, C., Romanel, A.: Modelling and simulation of biological processes in BlenX. SIGMETRICS Performance Evaluation Review 35(4), 32–39 (2008)
Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Graphical rule-based representation of signal-transduction networks. In: Liebrock, L.M. (ed.) Proc. 2005 ACM Symp. Appl. Computing, pp. 133–140. ACM Press, New York (2005)
Guerriero, M.L., Heath, J.K., Priami, C.: An automated translation from a narrative language for biological modelling into process algebra. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 136–151. Springer, Heidelberg (2007)
Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)
Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)
Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)
Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1. Springer, Heidelberg (1992)
Kofahl, B., Klipp, E.: Modelling the dynamics of the yeast pheromone pathway. Yeast 21(10), 831–850 (2004)
Kwiatkowski, M., Stark, I.: The continuous π-calculus: a process algebra for biochemical modelling. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 103–122. Springer, Heidelberg (2008)
Le Novère, N., et al.: The systems biology graphical notation. Nature Biotechnology 27, 735–741 (2009)
Mallavarapu, A., Thomson, M., Ullian, B., Gunawardena, J.: Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface (2008)
Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)
Paun, G., Rozenberg, G.: A guide to membrane computing. Theor. Comput. Sci. 287(1), 73–100 (2002)
Pedersen, M.: Compositional definitions of minimal flows in Petri nets. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 288–307. Springer, Heidelberg (2008)
Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface special issue (2009)
Pedersen, M., Plotkin, G.: A Language for Biochemical Systems. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 63–82. Springer, Heidelberg (2008)
Peyssonnaux, C., Eychène, A.: The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell. 93(1-2), 53–62 (2001)
Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological processes in the stochastic pi-calculus. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 123–152. Springer, Heidelberg (2006)
Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
Plotkin, G.: A calculus of biochemical systems (in preparation)
Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)
Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)
Regev, A., Paninab, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004)
Smith, L.P., Bergmann, F.T., Chandran, D., Sauro, H.M.: Antimony: a modular model definition language. Bioinformatics 25(18), 2452–2454 (2009)
Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pedersen, M., Plotkin, G.D. (2010). A Language for Biochemical Systems: Design and Formal Specification. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds) Transactions on Computational Systems Biology XII. Lecture Notes in Computer Science(), vol 5945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11712-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-11712-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11711-4
Online ISBN: 978-3-642-11712-1
eBook Packages: Computer ScienceComputer Science (R0)