Skip to main content

Modelling and Analysis of the NF-κB Pathway in Bio-PEPA

  • Chapter
Transactions on Computational Systems Biology XII

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5945))

  • 522 Accesses

Abstract

In this work we present a Bio-PEPA model describing the Nuclear Factor κB (NF-κB) signalling pathway. In particular our model focuses on the dynamic response of NF-κB to an external stimulus. Each biochemical species in the pathway is represented by a specific Bio-PEPA component and the external stimulus is abstracted by time-dependent Bio-PEPA events describing the start and the end of the signal.

The Bio-PEPA model is a formal intermediate representation of the pathway on which various kinds of analysis can be performed. Both stochastic and deterministic simulations are carried out to validate our model against the experimental data and in-silico experiments in the literature and to verify some properties, such as, the impact of the duration of the external stimulus and of the total NF-κB initial amount on the behaviour of some species of interest. Furthermore we use stochastic simulation to compare the behaviour of the single cell against the average behaviour of a population of cells. Finally, sensitivity analysis is considered to investigate the most influential parameters of the model. Importantly, the approach taken suggests that the sensitivity of some parameters alters with the time evolution of the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheong, R., Levchenko, A.: Wires in the soup: quantitative models of cell signalling. Trends in Cell Biology 18, 112–118 (2008)

    Article  Google Scholar 

  2. Hayden, M., Ghosh, S.: Shared principle in NF-κB Signalling. Cell 132, 344–362 (2008)

    Article  Google Scholar 

  3. Hoffmann, A., Levchenko, A., Scott, M., Baltimore, D.: The IκB–NF-κB Signaling Module: Temporal Control and Selective Gene Activation. Science 298, 1241–1245 (2002)

    Article  Google Scholar 

  4. Cho, K.H., Shin, S.Y., Lee, H.W., et al.: Investigations Into the Analysis and the Modeling of the TNF-mediated NFκB Signaling Pathway. Genome Res. 13, 2413–2422 (2003)

    Article  Google Scholar 

  5. Lipniacki, T., Paszek, P., Brasier, A., Luxon, B., Kimmel, M.: Mathematical model of NF-κB regulatory module. Journal of Theoretical Biology 228, 195–215 (2004)

    Article  MathSciNet  Google Scholar 

  6. Lipniacki, T., Paszek, P., Brasier, A., Luxon, B., Kimmel, M.: Stochastic Regulation in Early Immune Response. Biophysical Journal 90, 725–742 (2006)

    Article  Google Scholar 

  7. Nelson, D., Ihekwaba, A., Elliott, M., Johnson, J., Gibney, C., Foreman, B., Nelson, G., See, V., Horton, C., Spiller, D.G., Edwards, S., McDowell, H., Unitt, J.F., Sullivan, E., Grimley, R., Benson, N., Broomhead, D.S., Kell, D., White, M.: Oscillations in NF-κB Signalling Control the Dynamics of Gene Expression. Science 306, 704–708 (2004)

    Article  Google Scholar 

  8. Ashall, L., Horton, C., Nelson, D., Paszek, P., Harper, C., Sillitoe, K., Ryan, S., Spiller, D.G., Unitt, J.F., Broomhead, D., Kell, D., Rand, A., Sée, V., White, M.: Pulsatile Stimulation Determines Timing and Specificity of NF-κB–Dependent Transcription. Science 324, 242–246 (2009)

    Article  Google Scholar 

  9. Ihekwaba, A., Broomhead, D., Grimley, R., Kell, D.: Sensitivity analysis of parameters controlling oscillatory signalling in the NF-κB pathway: the roles of IKK and IκBα. Systems Biology 1, 93–103 (2004)

    Article  Google Scholar 

  10. Ihekwaba, A., Broomhead, D., Grimley, R., Kell, D.: Synergistic control of oscillations in the NF-κB signalling pathway. IEE Proc.-Syst. biol. 152, 153–160 (2005)

    Article  Google Scholar 

  11. Mendes, P.: GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 9, 563–571 (1993)

    Google Scholar 

  12. Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Curti, M., Degano, P., Priami, C., Baldari, C.: Modelling biochemical pathways through enhanced π-calculus. Theoretical Computer Science 325, 111–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an Abstraction for Biological Compartments. Theoretical Computer Science 325, 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Calder, M., Gilmore, S., Hillston, J.: Modelling the Influence of RKIP on the ERK Signalling Pathway Using the Stochastic Process Algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.: The Attributed Pi-Calculus with Priorities. In: Priami, C., et al. (eds.) Transactions on Computational Systems Biology XII. LNCS (LNBI), vol. 5945, pp. 13–76. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Priami, C.: Algorithmic systems biology. Communications of the ACM 52 (2009)

    Google Scholar 

  19. Fisher, J., Henzinger, T.: Executable cell biology. Nature Biotechnology 25, 1239–1249 (2007)

    Article  Google Scholar 

  20. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. School of Informatics University of Edinburgh Technical Report EDI-INF-RR-1231 (2008)

    Google Scholar 

  21. Ciocchetta, F., Hillston, J.: Bio-PEPA: a Framework for the Modelling and Analysis of Biochemical Networks. Theoretical Computer Science 410, 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carlotti, F., Dower, S., Qwarnstrom, E.: Dynamic shuttling of nuclear factor kappa B between the nucleus and cytoplasm as a consequence of inhibitor dissociation. J. Biol. Chem. 275, 41028–41034 (2000)

    Article  Google Scholar 

  23. Lee, E., Boone, D., Chai, S., Libby, S., Chien, M., Lodolce, J., Ma, A.: Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000)

    Article  Google Scholar 

  24. Degasperi, A., Gilmore, S.: Sensitivity Analysis of Stochastic Models of Bistable Biochemical Reactions. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 1–20. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Dizzy Edinburgh version (2009), http://homepages.inf.ed.ac.uk/stg/software/Dizzy/

  26. Ciocchetta, F., Degasperi, A., Heath, J., Hillston, J.: Modelling and analysis of the NF-κB pathway in Bio-PEPA. In: Breitling, R., Gilbert, D.R., Heiner, M., Priami, C. (eds.) Formal Methods in Molecular Biology, Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 09091. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

    Google Scholar 

  27. Gerondakis, S., Grossmann, M., Nakamura, Y., Pohl, T., Grumont, R.: Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts. Oncogene 18, 6888–6895 (1999)

    Article  Google Scholar 

  28. Hillston, J., Duguid, A.: Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style. In: Algorithmic Bioprocesses. Natural Computing Series. LNCS (2009)

    Google Scholar 

  29. Larcher, R., Ihekwaba, A., Priami, C.: A BetaBW model for the NF-κB pathway. Technical Report TR 25/2007, The Microsoft Research-University of Trento Centre for Computational and Systems Biology (2007)

    Google Scholar 

  30. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  31. Ciocchetta, F.: Bio-PEPA with events. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS (LNBI), vol. 5750, pp. 45–68. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  32. Ciocchetta, F., Guerriero, M.: Modelling Biological Compartments in Bio-PEPA. In: Proc. of MeCBIC 2008. ENTCS, vol. 227, pp. 77–95 (2009)

    Google Scholar 

  33. The Bio-PEPA Workbench (2009), http://www.dcs.ed.ac.uk/home/stg/software/biopepa/about.html

  34. Bio-PEPA (2008), http://www.biopepa.org/

  35. MATLAB (2009), http://www.mathworks.com/products/matlab/

  36. Dizzy (2008), http://magnet.systemsbiology.net/software/Dizzy

  37. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  38. Bank, R., et al.: Transient simulation of silicon devices and circuits. IEEE Transactions on Electron Devices 32, 1992–2007 (1985)

    Article  Google Scholar 

  39. McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819 (1997)

    Article  Google Scholar 

  40. Ihekwaba, A., Wilkinson, S., Waithe, D., Broomhead, D., Li, P., Grimley, R., Benson, N.: Bridging the gap between in silico and cell-based analysis of the nuclear factor κB signalling pathway by in vitro studies of IKK2. FEBS Journal 274, 1678–1690 (2007)

    Article  Google Scholar 

  41. Saltelli, A., Chan, K., Scott, E.: Sensitivity Analysis. Wiley, Chichester (2000)

    MATH  Google Scholar 

  42. Cao, Y., Petzold, L.: Accuracy limitations and the measurements of errors in the stochastic simulation of chemically reacting systems. J. Comput. Phys. 212, 6–24 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M., Hillston, J.: The Bio-PEPA Tool Suite. In: Proceedings of the 6th International Conference on Quantitative Evaluation of SysTems (QEST 2009), Budapest, Hungary, pp. 309–310 (2009)

    Google Scholar 

  44. Calder, M., Duguid, A., Gilmore, S., Hillston, J.: Stronger computational modelling of signalling pathways using both continuous and discrete-state methods. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 63–77. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  45. Ankers, J., Spiller, D., White, M., Harper, C.: Spatio-temporal protein dynamics in single living cells. Curr. Opin. Biotechnology 19, 375–380 (2008)

    Article  Google Scholar 

  46. Sillitoe, K., Horton, C., Spiller, D., White, M.: Single-cell time-lapse imaging of the dynamic control of nfκb signalling. Biochem. Soc. Transactions 35, 263–266 (2007)

    Article  Google Scholar 

  47. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic model checking for performance and reliability analysis. ACM SIGMETRICS Performance Evaluation Review (2009)

    Google Scholar 

  48. PRISM (2009), http://www.prismmodelchecker.org

  49. Ciocchetta, F., Degasperi, A., Hillston, J., Calder, M.: Some Investigations Concerning the CTMC and the ODE Model Derived from Bio-PEPA. In: Proc. of FBTC 2008. ENTCS, vol. 209, pp. 145–163 (2009)

    Google Scholar 

  50. Gerhart, J., Kirshner, M.: The theory of facilitated variation. PNAS (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ciocchetta, F., Degasperi, A., Heath, J.K., Hillston, J. (2010). Modelling and Analysis of the NF-κB Pathway in Bio-PEPA. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds) Transactions on Computational Systems Biology XII. Lecture Notes in Computer Science(), vol 5945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11712-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11712-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11711-4

  • Online ISBN: 978-3-642-11712-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics