Skip to main content

Three-Dimensional Reconstruction of Macroscopic Features in Biological Materials

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 52))

  • 1194 Accesses

Abstract

This paper covers the topic of three dimensional reconstruction of small textureless formations usually found in biological samples. Generally used reconstructing algorithms do not provide sufficient accuracy for surface analysis. In order to achieve better results, combined strategy was developed, linking stereo matching algorithms with monocular depth cues such as depth from focus and depth from illumination.

Proposed approach is practically tested on bryophyte canopy structure. Recent studies concerning bryophyte structure applied various modern, computer analysis methods for determining moss layer characteristics drawing on the outcomes of a previous research on surface of soil. In contrast to active methods, this method is a non-contact passive, therefore, it does not emit any kind of radiation which can lead to interference with moss photosynthetic pigments, nor does it affect the structure of its layer. This makes it much more suitable for usage in natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jarvis, R.A.: A perspective on range finding techniques for computer vision. IEEE Trans. Pattern Analysis and Machine Intelligence 5, 122–139 (1983)

    Article  Google Scholar 

  2. Horn, B.: Robot Vision. MIT Press, Cambridge (1986)

    Google Scholar 

  3. Horn, B., Brooks, M.: The variantional approach to shape from shading. In: Computer Vision Graphics and Image Processing, vol. 22, pp. 174–208 (1986)

    Google Scholar 

  4. Coleman Jr., E., Jain, R.: Shape from shading for surfaces with texture and specularity. In: IJCAI 1981, pp. 652–657 (1981)

    Google Scholar 

  5. Prados, E., Faugeras, O.: Shape from shading: a well-posed problem? In: Computer Vision and Pattern Recognition, vol. 2, pp. 870–877 (2005)

    Google Scholar 

  6. Ogale, A., Aloimonos, Y.: Shape and the stereo correspondence problem. International Journal of Computer Vision 65(3), 147–162 (2005)

    Article  Google Scholar 

  7. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(9), 920–932 (1994)

    Article  Google Scholar 

  8. Sun, J., Li, Y., Kang, S.B., Shum, H.Y.: Symmetric stereo matching for occlusion handling. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Washington, DC, USA, vol. 2, pp. 399–406. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  9. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: ICCV, vol. 2, p. 508 (2001)

    Google Scholar 

  10. Rice, S.K., Gutman, C., Krouglicof, N.: Laser scanning reveals bryophyte canopy structure. New Phytologist 166(2), 695–704 (2005)

    Article  Google Scholar 

  11. Motyka, O., Krumnikl, M., Sojka, E., Gaura, J.: New approach in bryophyte canopy analysis: 3d image analysis as a suitable tool for ecological studies of moss communities? In: Environmental changes and biological assessment IV., Scripta Fac. Rerum Natur. Univ. Ostraviensis (2008)

    Google Scholar 

  12. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: International Conference on Computer Vision (ICCV 1999), Corfu, Greece, pp. 666–673 (1999)

    Google Scholar 

  13. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)

    Article  Google Scholar 

  14. Heikilla, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 1106–1112 (1997)

    Google Scholar 

  15. Heikilla, J.: Geometric camera calibration using circular control points. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1066–1077 (2000)

    Article  Google Scholar 

  16. Bouguet, J.Y.: Camera calibration toolbox for matlab (2005), http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

  17. Howard, I.P., Rogers, B.J.: Binocular Vision and Stereopsis. Oxford Scholarship Online, 212–230 (1996)

    Google Scholar 

  18. Liao, M., Wang, L., Yang, R., Gong, M.: Light fall-off stereo. In: Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  19. Magda, S., Kriegman, D., Zickler, T., Belhumeur, P.: Beyond lambert: reconstructing surfaces with arbitrary brdfs. In: ICCV, vol. 2, pp. 391–398 (2001)

    Google Scholar 

  20. Ortiz, A., Oliver, G.: Shape from shading for multiple albedo images. In: ICPR, vol. 1, pp. 786–789 (2000)

    Google Scholar 

  21. Wedekind, J.: Fokusserien-basierte rekonstruktion von mikroobjekten. Master’s thesis, Universitat Karlsruhe (2002)

    Google Scholar 

  22. Chaudhuri, S., Rajagopalan, A., Pentland, A.: Depth from Defocus: A Real Aperture Imaging Approach. Springer, Heidelberg (1999)

    Google Scholar 

  23. Nayar, S.K., Watanabe, M., Noguchi, M.: Real-time focus range sensor. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(12), 1186–1198 (1996)

    Article  Google Scholar 

  24. Xiong, Y., Shafer, S.: Depth from focusing and defocusing. Technical Report CMU-RI-TR-93-07, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1993)

    Google Scholar 

  25. Crum, H.: Structural Diversity of Bryophytes, p. 379. University of Michigan Herbarium, Ann Arbor (2001)

    Google Scholar 

  26. Brodie, H.J.: The splash-cup dispersal mechanism in plants. Canadian Journal of Botany (29), 224–230 (1951)

    Google Scholar 

  27. Proctor, M.C.F., Tuba, Z.: Poikilohydry and homoiohydry: antithesis or spectrum of possibilites? New Phytologist (156), 327–349 (2002)

    Google Scholar 

  28. Darboux, F., Huang, C.: An simultaneous-profile laser scanner to measure soil surface microtopography. Soil Science Society of America Journal (67), 92–99 (2003)

    Google Scholar 

  29. Rice, S.K., Collins, D., Anderson, A.M.: Functional significance of variation in bryophyte canopy structure. American Journal of Botany (88), 1568–1576 (2001)

    Google Scholar 

  30. Bachmaier, M., Backes, M.: Variogram or semivariogram - explaining the variances in a variogram. Precision Agriculture (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krumnikl, M., Sojka, E., Gaura, J., Motyka, O. (2010). Three-Dimensional Reconstruction of Macroscopic Features in Biological Materials. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2009. Communications in Computer and Information Science, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11721-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11721-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11720-6

  • Online ISBN: 978-3-642-11721-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics