Abstract
This paper covers the topic of three dimensional reconstruction of small textureless formations usually found in biological samples. Generally used reconstructing algorithms do not provide sufficient accuracy for surface analysis. In order to achieve better results, combined strategy was developed, linking stereo matching algorithms with monocular depth cues such as depth from focus and depth from illumination.
Proposed approach is practically tested on bryophyte canopy structure. Recent studies concerning bryophyte structure applied various modern, computer analysis methods for determining moss layer characteristics drawing on the outcomes of a previous research on surface of soil. In contrast to active methods, this method is a non-contact passive, therefore, it does not emit any kind of radiation which can lead to interference with moss photosynthetic pigments, nor does it affect the structure of its layer. This makes it much more suitable for usage in natural environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jarvis, R.A.: A perspective on range finding techniques for computer vision. IEEE Trans. Pattern Analysis and Machine Intelligence 5, 122–139 (1983)
Horn, B.: Robot Vision. MIT Press, Cambridge (1986)
Horn, B., Brooks, M.: The variantional approach to shape from shading. In: Computer Vision Graphics and Image Processing, vol. 22, pp. 174–208 (1986)
Coleman Jr., E., Jain, R.: Shape from shading for surfaces with texture and specularity. In: IJCAI 1981, pp. 652–657 (1981)
Prados, E., Faugeras, O.: Shape from shading: a well-posed problem? In: Computer Vision and Pattern Recognition, vol. 2, pp. 870–877 (2005)
Ogale, A., Aloimonos, Y.: Shape and the stereo correspondence problem. International Journal of Computer Vision 65(3), 147–162 (2005)
Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(9), 920–932 (1994)
Sun, J., Li, Y., Kang, S.B., Shum, H.Y.: Symmetric stereo matching for occlusion handling. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Washington, DC, USA, vol. 2, pp. 399–406. IEEE Computer Society, Los Alamitos (2005)
Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: ICCV, vol. 2, p. 508 (2001)
Rice, S.K., Gutman, C., Krouglicof, N.: Laser scanning reveals bryophyte canopy structure. New Phytologist 166(2), 695–704 (2005)
Motyka, O., Krumnikl, M., Sojka, E., Gaura, J.: New approach in bryophyte canopy analysis: 3d image analysis as a suitable tool for ecological studies of moss communities? In: Environmental changes and biological assessment IV., Scripta Fac. Rerum Natur. Univ. Ostraviensis (2008)
Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: International Conference on Computer Vision (ICCV 1999), Corfu, Greece, pp. 666–673 (1999)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)
Heikilla, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 1106–1112 (1997)
Heikilla, J.: Geometric camera calibration using circular control points. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1066–1077 (2000)
Bouguet, J.Y.: Camera calibration toolbox for matlab (2005), http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
Howard, I.P., Rogers, B.J.: Binocular Vision and Stereopsis. Oxford Scholarship Online, 212–230 (1996)
Liao, M., Wang, L., Yang, R., Gong, M.: Light fall-off stereo. In: Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Magda, S., Kriegman, D., Zickler, T., Belhumeur, P.: Beyond lambert: reconstructing surfaces with arbitrary brdfs. In: ICCV, vol. 2, pp. 391–398 (2001)
Ortiz, A., Oliver, G.: Shape from shading for multiple albedo images. In: ICPR, vol. 1, pp. 786–789 (2000)
Wedekind, J.: Fokusserien-basierte rekonstruktion von mikroobjekten. Master’s thesis, Universitat Karlsruhe (2002)
Chaudhuri, S., Rajagopalan, A., Pentland, A.: Depth from Defocus: A Real Aperture Imaging Approach. Springer, Heidelberg (1999)
Nayar, S.K., Watanabe, M., Noguchi, M.: Real-time focus range sensor. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(12), 1186–1198 (1996)
Xiong, Y., Shafer, S.: Depth from focusing and defocusing. Technical Report CMU-RI-TR-93-07, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1993)
Crum, H.: Structural Diversity of Bryophytes, p. 379. University of Michigan Herbarium, Ann Arbor (2001)
Brodie, H.J.: The splash-cup dispersal mechanism in plants. Canadian Journal of Botany (29), 224–230 (1951)
Proctor, M.C.F., Tuba, Z.: Poikilohydry and homoiohydry: antithesis or spectrum of possibilites? New Phytologist (156), 327–349 (2002)
Darboux, F., Huang, C.: An simultaneous-profile laser scanner to measure soil surface microtopography. Soil Science Society of America Journal (67), 92–99 (2003)
Rice, S.K., Collins, D., Anderson, A.M.: Functional significance of variation in bryophyte canopy structure. American Journal of Botany (88), 1568–1576 (2001)
Bachmaier, M., Backes, M.: Variogram or semivariogram - explaining the variances in a variogram. Precision Agriculture (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krumnikl, M., Sojka, E., Gaura, J., Motyka, O. (2010). Three-Dimensional Reconstruction of Macroscopic Features in Biological Materials. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2009. Communications in Computer and Information Science, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11721-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-11721-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11720-6
Online ISBN: 978-3-642-11721-3
eBook Packages: Computer ScienceComputer Science (R0)