
Idea: Towards Architecture-Centric Security
Analysis of Software

Karsten Sohr and Bernhard Berger

Technologie-Zentrum Informatik, Bremen, Germany,
{sohr|berber}@tzi.de

Abstract. Static security analysis of software has made great progress
over the last years. In particular, this applies to the detection of low-
level security bugs such as buffer overflows, Cross-Site Scripting and SQL
injection vulnerabilities. Complementarily to commercial static code re-
view tools, we present an approach to the static security analysis which
is based upon the software architecture using a reverse engineering tool
suite called Bauhaus. This allows one to analyze software on a more ab-
stract level, and a more focused analysis is possible, concentrating on
software modules regarded as security-critical. In addition, certain secu-
rity flaws can be detected at the architectural level such as the circum-
vention of APIs or incomplete enforcement of access control. We discuss
our approach in the context of a business application and Android’s
Java-based middleware.

1 Introduction

More and more technologies find their way into our daily life such as PCs, mobile
phones with PC-like functionality, and electronic passports. Enterprises, financial
institutes, or government agencies map their (often security-critical) business
processes to IT systems. With this dependency of technologies new risks go along
which must be adequately addressed. One of the main problems arise from faulty
software which led to most of the security incidents reported to CERT [3]. For
this reason, a lot of work has been done on statically detecting common low-
level security bugs in software such as buffer overflows, simple race conditions
or SQL injection vulnerabilities. These efforts led to research prototypes [4, 5,
14] and even to commercial products [11, 7, 18]. In the future, however, it will
be expected that attackers will also exploit other software errors such as logical
flaws in access control (e.g., inconsistent role-based access control in Web Service
applications) or the wrong usage of the security mechanisms provided by software
frameworks such as JEE or Spring [17].

Moreover, even if the software architecture has been specified with modeling
languages such as UML, it is not clear whether the actual software architec-
ture manifesting in the source code is synchronized with the specified (intended)
architecture. As software is often changed in an ad hoc fashion due to the cus-
tomers demands, the software architecture is steadily eroded. In particular, this



problem also applies to the security aspects of the software architecture. For ex-
ample, if access to a security-critical resource ought to be protected by an API
which enforces access control decisions, but an application for reasons of con-
venience can directly call the functionality in question without using this API,
then the application’s security can be easily subverted.

As a consequence, a methodology (including supporting tools) is desirable
which allows one to analyze software on a more abstract level than the detailed
source code. This way, certain kinds of logical security flaws in the software
architecture can be detected as those mentioned above. In addition, a more
abstract view on the software allows the security analyst to focus her analysis
with already available tools more on the relevant software parts, reducing the
rate of the false positives. For example, internal functionality, which is only called
by a limited number of users, need not be analyzed to such an extent as modules
exposed on the Internet. Last but not least, analyses at the architectural level
can be carried out at design time such that security flaws can be detected at early
stages of the software development process. This reduces the costs of resolving
the security problems.

In this paper, we sketch a methodology for an architecture-based security
analysis of software. The basis of this approach is the Bauhaus tool suite, a
general-purpose reverse engineering tool, which has been successfully used in
research projects as well as in commercial projects [19, 21]. With the help of the
Bauhaus tool, different kinds of analysis can be conducted at the architectural
level. First, one can directly analyze the high-level architecture of an application
w.r.t. security requirements. Due to the fact that the Bauhaus tool allows one
to extract a low-level architecture from the source code, called resource flow
graph (RFG), one can also check this architecture against the expected high-
level architecture. This way, one can detect security problems such as missing
access control checks in security-critical APIs.

Having carried out the analyses at this architectural level, one can switch to
an analysis at the detail level, i.e., at the source code. This analysis can then
be done with the help of commercially available tools or research tools such as
model checkers and SAT solvers or Bauhaus itself.

The remainder of this paper is organized as follows. In Section 2, we describe
the main concepts of the Bauhaus tool suite, concentrating on the RFG. We
explain the principles of our architecture-based methodology for the security
analysis of software in Section 3. Section 4 discusses some early results of our
approach in the context of two different case studies, namely, a tutorial applica-
tion for JEE and the Java-based middleware of the Android platform. Section 5
gives a short overview of related work, whereas Section 6 concludes and discusses
possible research directions.

2 The Bauhaus tool suite

The Bauhaus tool suite is a reverse engineering tool which lets one deduce two
abstractions from the source code, namely the Intermediate Language (IML) and



the resource flow graph (RFG)[19]. The former representation in essence is an
attributed syntax tree (an enhanced AST), which contains the detailed program
information such as loop statements, variable definitions and name binding. The
latter works on a higher abstraction level and represents architecturally relevant
information of the software.

An RFG is a hierarchical graph, which consists of typed Nodes and edges.
Nodes represent objects like routines, types, files and components. Relations be-
tween these elements are modeled with edges. The information stored in the
RFG is structured in views. Each view represents a different aspect of the ar-
chitecture, e.g., the call graph or the hierarchy of modules. Technically, a view
is a subgraph of the RFG. The model of the RFG is fully dynamic and may
be modified by the user, i.e., by inserting or deleting node/edge attributes and
types. For visualizing the different views of RFGs, Graphical Visualiser (Gravis)
has been implemented [8]. The Gravis tool facilitates high-level analysis of the
system and provides rich functionality to produce new views by RFG analyses
or to manipulate generated views.

3 Security analyses with the help of a RFG

We now discuss different aspects of analyzing software w.r.t. security based upon
the RFG. Specifically, we describe how the methods and techniques, which have
been well-established in the context of software quality assurance, can be ad-
justed for security analysis.

Notation of the architecture. Due to the fact that the elements of the RFG can
be represented by a meta model, it is possible to define RFG profiles, that are
specific to the software frameworks and security mechanisms used in the an-
alyzed application. The elements of the profile have a well-defined semantics,
which simplifies the analyses at the architectural level and leads to a better un-
derstanding of the security aspects of the architecture. For example, in case of
a JEE business application one might have nodes of types such as “role”, “per-
mission”, or “user” and edges of the types “user assignment” and “permission
assignment” to express role-based access control (RBAC) [1]. In order to secure
the communications, one might have “encrypted RPC channel” or “encrypted
SOAP channel” edges.

Recovery of the software architecture. With the help of the reflexion method [15],
the software architecture can be reconstructed and documented as a separate
view of the RFG. This is done in a semi-automatic and iterative process starting
from an abstract to a more detailed architecture description. Usually, this process
is carried out in workshops with the software architects and developers.

Often the mental architectures, i.e., the architecture each developer / archi-
tect has in mind, might differ for the different participants of this process. These
mental architectures are unified and written down as a hypothesized architec-
ture which is then checked against the implemented low-level architecture. This



way, discrepancies between both architectures, the hypothesized and the imple-
mented one, can be automatically detected. If there are references (edges) in
the implemented architecture which are absent in the hypothesized architecture,
then we speak of divergences. An absence is a reference occurring in the hypoth-
esized architecture and not being present in the source code. The architecture is
manually refined and enhanced with new knowledge gained from previous steps
in an iterative process until the architecture remains stable.

So far, the reflexion analysis was carried out having software quality in gen-
eral rather than software security in mind. However, this step neatly fits to the
“Ambiguity analysis” introduced by McGraw [17] because a different under-
standing of the software architecture might lead to security holes. This way, a
natural application of the reflexion method in the security context is possible. In
particular, the RFG representing the architecture can be enhanced with security
modeling elements.

This reflexion method is used in 4.1 to find violations of the RBAC policy
of the JEE demo system Duke’s Bank.

Security views. As indicated in Section 2, the Bauhaus tool suite allows one
to define views on the software architecture to concentrate on the aspects to
be analyzed and hence to carry out a more focused analysis. In a JEE-based
business application one might define a view which comprises all remote access
or a view on RBAC. In the context of a mobile phone platform, one might define
a view for the mechanism which implements the enforcement of permissions for
protected resources such as Bluetooth or WiFi.

Further analyses on the RFG. Owing to the fact that applications process data
of different sensitivity (security levels), the data flow through the modules of the
software must be identified and the communications adequately secured. Those
paths through an application’s modules and functions should be identified where
sensitive data flow without appropriate protection such as encryption or digital
signatures. For this to accomplish, we can assign security labels to the data (e.g.,
member variables in Java or global variables in C) and also to the modules and
functions of the application. We can further define which data can be accessed
by which module and function, respectively. At the RFG level, we then can check
whether the defined access control policy is violated.

Security requirements which the RFG must satisfy itself can be represented
as a graph. An example of such a requirement is shown in Figure 1. Here, it
is stated that if we have a remote method call on Entity Java Beans (EJBs),
then the Java annotation “RolesAllowed” is mandatory. This means that remote
method calls are only allowed if (the appropriate) roles are assigned to the caller’s
principal. One now can search for all matching occurrences of remote method
calls on EJBs—the “condition” part in Figure 1—within the RFG and check
whether the requirement is fulfilled for all occurrences of the condition. However,
note that subgraph problems in general are known to be NP-complete such that
heuristics are to be applied [12].



Fig. 1. A security requirement represented as a graph.

Analyses on the RFG and the detailed program representation. As the Bauhaus
tool suite also makes available the detailed program representation in form of the
IML, code analyses can be carried out at the source code level. This way, one can
start analyzing the software at the more abstract RFG level. Having identified
security-relevant locations of the application via the RFG, one can analyze the
corresponding source code locations more deeply, i.e., both representations can
be used in conjunction for the security analysis. Alternatively, one can employ the
RFG to pinpoint security-critical parts of the software and then use commercially
available analysis tools to detect low-level security bugs. Research prototypes
based on SAT solvers or theorem provers might also be useful in order to check
the code against constraints (such as invariants or pre- and postconditions). Two
promising examples of such tools are JForge [9] and ESC/Java2 [6].

4 Early Case Studies

We now discuss our architecture-centric security analysis in the context of two
case studies. The first one is named “Duke’s Bank”, a simple application from
Sun’s JEE tutorial [20]. We chose this application because on the one hand, it
is simple, and on the other hand, it has a widely-used architecture for business
applications. In order to show that our approach can also be used in the context
of embedded systems’ software, the second case study is from the mobile phone
domain, namely, the Java-based middleware of the Android platform.

4.1 Analysis of a JEE application

Duke’s Bank is a demo banking application allowing clerks to administer cus-
tomer accounts and customers to access their account histories and perform
transactions. It is a typical JEE application with a Web-based as well as a
rich client interface (see Figure 2(a)). A customer can access information about
his account via the Web interface, whereas the rich client interface can only
be used by the clerk. The functionality of the application is provided by EJBs
(AccountControllerSessionBean, TxControllerSessionBean, CustomerCon-
trollerSessionBean). In these EJBs, access to the database containing the



(a) Intended architecture of the Duke’s
Bank application [20]

(b) The extracted RBAC policy repre-
sented as a graph

Fig. 2. Description of the applications architecture

account data is encapsulated via the Java Persistence framework.
In Figure 2(a), one can see that the CustomerControllerSessionBean com-

ponent cannot be accessed by the Web interface, i.e., the customers have no
access to this bean. Figure 2(b) then displays the intended RBAC policy for the
JEE application. The nodes represent the roles as well as EJBs and the edges
correspond to the permission to access an EJB (permission assignment). Two
roles Clerk and Customer have been defined, and specifically, there is no access
from Customer to the component CustomerControllerBean.

We now briefly describe how the reflexion analysis can be applied to the
Duke’s Bank application with the focus on RBAC for EJBs. In a first step, we
loaded the source code of this application into the Bauhaus tool and obtained an
RFG as the low-level architecture, which is not given in this paper for reasons
of brevity. The RBAC policy displayed in Figure 2(b) can then be regarded as
the hypothesized architecture or more precisely as a security view representing
the RBAC policy for the Duke’s Bank application. This architecture is checked
against the RFG gained from the source code.

Figure 3(a) shows the results of this reflexion analysis. Notice that the edges
with the solid lines are representing divergences. The consequence of this di-
vergence is that the code allows access that ought to be forbidden according
to the RBAC policy, i.e., security violations are possible. The graph depicted
in Figure 3(b) shows these violations manifesting in the source code’s RFG 1.
For example, now every principal (be it a customer or a clerk) can access the
method getDetails() of the CustomerControllerSessionBean. This way, she
can query information on all customer data such as account numbers. Clearly,

1 Note that the roles Clerk and Customer are mapped to the source code roles bankAd-
min and bankCustomer within the frameworks of the reflexion analysis. Therefore,
we have different names in Figure 3(b).



this is only a demo application, but it shows the kinds of problems which our
analysis technique can detect.

(a) Violations of the intended ar-
chitecture

(b) Violations at the source code level

Fig. 3. Analysis results

4.2 Analysis of Android

We also loaded the Android framework classes, implementing the Java-based
middleware of Android into the Bauhaus tool suite to gain a better program
understanding. Then we constructed an RFG, which can be used to identify
the parts implementing the security concepts of the Android middleware such
as mandatory access control for inter process communication (IPC), protected
APIs, protection levels of applications [10]. This can be done by traversing the
RFG and defining views which correspond to the security concepts implemented
within the framework classes. The views let the analyst conduct a more focused
analysis on the code. After constructing such views, she can switch to source
code analysis as indicated above.

Employing our RFG-based analysis technique, we detected a kind of backdoor
meant for Android developers, which does not seem to be officially documented:
The end user can assign permissions to applications via a system-wide permission
file. If there had not been additional security checks put in place, an end user
could have given access rights defined by the operator to her own applications.

Beyond this, we can also check at the architectural level whether the per-
missions on security-critical resources (e.g., sending SMS, Bluetooth or WiFi
access) are appropriately enforced. This means we can check on the RFG if
the enforcePermission() methods are called for the permissions listed in the
Manifest.permission class.



5 Related Work

There exist a plethora of works for the static security analysis of software. Some
of those tools are research prototypes such as MOPS [4] and Eau Claire [5],
others are successful commercial tools such as Fortify Source Code Analyzer
[11], Coverity Prevent [7], and Ounce [18]. Our approach is complementary to all
those works because we utilize architectural information to focus the analysis on
the source code and carry out our analyses directly on the architecture. Common
low-level security bugs can clearly be detected by well-established analysis tools.
Only, Coverity Prevent considers the software architecture for analyses, which
at this time is limited to the software visualization not supporting more complex
analyses such as the reflexion method.

In addition, as new modeling elements can be added to the RFG through
meta-modeling, domain- and framework-specific security analyses can be per-
formed. Little work has been done in the context of software frameworks before
such as the LAPSE tool, which can find low-level security bugs in JEE applica-
tions [16].

Our work can also be compared with approaches to modeling and analyz-
ing security requirements, specifically, in the context of UML profiles. Two such
specification languages are UMLsec [13], which allows one to formulate security
requirements w.r.t. access control and confidentiality, and SecureUML [2], which
allows one to model RBAC policies. In addition, Basin et al. present an approach
to analyzing RBAC policies based on UML meta-modelling [2]. Our work cur-
rently is focused on checking the intended architecture against the implemented
low-level architecture, although analyzing the architecture itself remains future
work.

6 Conclusion and Outlook

We presented an architecture-centric approach to the security analysis of soft-
ware which can be seen as complementary work to available security review
tools. This allows one to conduct the analyses on a more abstract level detecting
also logical security flaws in the software such as erroneous RBAC of business
applications. Our approach is based upon a reverse engineering tool suite called
Bauhaus. With the help of two early case studies, we showed that our approach
could be employed in different domains, namely, JEE-based business applications
and mobile phones.

As this paper only reports on early results, a lot of work remains to be done
in the future. First, we intend to systematically analyze more comprehensive
business applications which employ software frameworks. Specifically, this will be
done in the context of the Service Oriented Architecture. In addition, we intend
to investigate how security views can be extracted and how far this process
can be automated in the context of an encompassing case study such as the
Android middleware. Last but not least, one can contemplate how to integrate
our architecture-based analysis method into the Software Development Lifecycle
with the focus on the continuous monitoring of the security architecture.



References

1. American National Standards Institute Inc. Role Based Access Control, 2004.
ANSI-INCITS 359-2004.

2. D. Basin, M. Clavel, J. Doser, and M. Egea. Automated analysis of security-design
models. Information and Software Technology, 51:815–831, 2009.

3. CERT/CC. CERT statistics, 2008. http://www.cert.org/stats/.
4. H. Chen and D. Wagner. MOPS: an infrastructure for examining security proper-

ties of software. In ACM Conference on Computer and Communications Security,
pages 235–244, 2002.

5. B. Chess. Improving Computer Security Using Extended Static Checking. In IEEE
Symposium on Security and Privacy, pages 160–, 2002.

6. David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. Tech-
nical report, University of Nijmegen, 2004. NIII Technical Report NIII-R0413.

7. Coverity. Coverity Prevent, 2009. http://www.coverity.com.
8. J. Czeranski, T. Eisenbarth, H. Kienle, R. Koschke, and D. Simon. Analyzing xfig

Using the Bauhaus Tool. In Working Conference on Reverse Engineering, pages
197–199. IEEE Computer Society Press, November 2000.

9. G. Dennis, K. Yessenov, and D. Jackson. Bounded Verification of Voting Software.
In Verified Software: Theories, Tools, Experiments, Second International Confer-
ence, volume 5295 of Lecture Notes in Computer Science, pages 130–145. Springer,
2008.

10. W. Enck, M. Ongtang, and P. McDaniel. Understanding Android Security. IEEE
Security and Privacy, 7(1):50–57, 2009.

11. Fortify Software. Fortify Source Code Analyzer, 2009.
http://www.fortify.com/products/.

12. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San
Francisco, 1979.

13. J. Jürjens and P. Shabalin. Automated verification of UMLsec models for security
requirements. In Proc. of UML 2004 - The Unified Modelling Language: Modelling
Languages and Applications, volume 3273 of LNCS, pages 365–379. Springer, 2004.

14. K. Ashcraft and D.-R. Engler. Using Programmer-Written Compiler Extensions
to Catch Security Holes. In IEEE Symposium on Security and Privacy, pages
143–159, 2002.

15. R. Koschke and D. Simon. Hierarchical Reflexion Models. In Working Conference
on Reverse Engineering, pages 36–45. IEEE Computer Society Press, November
2003.

16. V.B. Livshits and M.S. Lam. Finding Security Vulnerabilities in Java Applications
Using Static Analysis. In Proceedings of the 14th USENIX Security Symposium,
August 2005.

17. G. McGraw. Software Security: Building Security In. Addison-Wesley, 2006.
18. Ounce Labs Inc. Website, 2009. http://www.ouncelabs.com/.
19. A. Raza, G. Vogel, and E. Plödereder. Bauhaus - A Tool Suite for Program

Analysis and Reverse Engineering. In Ada-Europe, volume 4006 of Lecture Notes
in Computer Science, pages 71–82. Springer, 2006.

20. Sun Microsystems. The Java EE 5 Tutorial, 2008.
http://java.sun.com/javaee/5/docs/tutorial/doc/bnclz.html.

21. Universitaet Stuttgart. Project Bauhaus—Software Architecture, Software
Reengineering, and Program Understanding, 2009. http://www.bauhaus-
stuttgart.de/bauhaus/index-english.html.


