Skip to main content

A New Optimized High-Speed Low-Power Data-Driven Dynamic (D3L) 32-Bit Kogge-Stone Adder

  • Conference paper
Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation (PATMOS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5953))

Abstract

Data Driven Dynamic Logic (D3L) achieves a considerably energy saving, over conventional Domino Logic, by removing the clock signal: the control of the precharge and evaluation phases is managed only by input data. Unfortunately, this advantage is typically obtained at the expense of speed performances and consequently affecting the Energy-Delay Product (EDP). This paper presents a novel technique to design D3L parallel prefix adders considerably reducing speed penalties. Moreover, a new design style, named Splith-Path D3L, is introduced to overcome the limits of standard D3L. When applied to a 32-bit Kogge-Stone adder realized with the STMicroelectronics 65nm 1V CMOS technology, the proposed technique leads to an EDP 25% and 20% lower than the standard Domino Logic and the conventional D3L counterparts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shalem, R., John, E., John, L.K.: A novel low power energy recovery full adder cell. In: Proceedings of the 9th Great Lakes Symposium on VLSI, Ypsilanti, Michigan (USA), March 4-6, pp. 380–383 (1999)

    Google Scholar 

  2. Kawaguchi, H., Sakurai, T.: A reduced clock-swing flip-flop (RCSFF) for 63% power reduction. IEEE J. Solid-State Circuits 33(5), 807–811 (1998)

    Article  Google Scholar 

  3. Rafati, R., Fakhraie, S.M., Smith, K.C.: A 16-Bit Barrel-Shifter Implemented in Data-Driven Dynamic Logic (D3L). IEEE Transaction on Circuits and Systems I 53(10), 2194–2202 (2006)

    Article  Google Scholar 

  4. Frustaci, F., Lanuzza, M., Zicari, P., Perri, S., Corsonello, P.: Designing High Speed Adders in Power-Constrained Environments. IEEE Transaction on Circuits and Systems. II. Express Brief 56(2), 172–176 (2009)

    Google Scholar 

  5. Kim, J., Lee, K., Yoo, H.-J.: A 372ps 64-bit Adder using Fast Pull-up Logic in 0.18-um CMOS. In: Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS 2006), Island of KOS, Greece, May 21-24, pp. 13–16 (2006)

    Google Scholar 

  6. Kao, S., Zlatanovici, R., Nikolic, B.: A 240ps 64b Carry-Lookahead Adder in 90nm CMOS. In: Proceedings of the2006 IEEE International Solid-State Circuits Conference, San Francisco, California, USA, February 6-9, pp. 1735–1744 (2006)

    Google Scholar 

  7. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Transactions on Computers 22, 786–793 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brent, R.P., Kung, H.T.: A Regular Layout for Parallel Adders. IEEE Transactions on Computers C-31, 260–264 (1982)

    Google Scholar 

  9. Knowles, S.: A family of adders. In: Proceedings of the 15th IEEE Symposium on Computer Arithmetic, Vail, Colorado (USA), June 11-13, pp. 277–281 (2001)

    Google Scholar 

  10. Elgebaly, M., Sachdev, M.: A leakage tolerant energy efficient wide domino circuit technique. In: Proceedings of the 45th Midwest Symposium on Circuits and Systems, Tulsa, Oklaomah (USA), August 4-7, vol. 1, pp. 487–490 (2002)

    Google Scholar 

  11. Solomatnikov, A., Somasekhar, D., Roy, K., Koh, C.-K.: Skewed CMOS: Noise-Immune High-Performance Low-Power Static Circuit Family. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 10(4), 469–476 (2002)

    Article  Google Scholar 

  12. Sutherland, I., Sproull, R., Harris, D.: Logical Effort. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  13. STMicroelectronics CORE65LPSVT_1.00V 4.0 Standard Cell Library User Manual & Data Book

    Google Scholar 

  14. Croon, J.A., Sansen, W., Maes, H.E.: Matching Properties of Deep Sub-Micron MOS Transistors. Springer, Heidelberg (2005)

    Google Scholar 

  15. Srivasta, A., Sylvester, D., Blaauw, D.: Statistical Analysis and Optimization for VLSI: Timing and Power. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frustaci, F., Lanuzza, M. (2010). A New Optimized High-Speed Low-Power Data-Driven Dynamic (D3L) 32-Bit Kogge-Stone Adder. In: Monteiro, J., van Leuken, R. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2009. Lecture Notes in Computer Science, vol 5953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11802-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11802-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11801-2

  • Online ISBN: 978-3-642-11802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics