Skip to main content

Alloy+HotCore: A Fast Approximation to Unsat Core

  • Conference paper
Abstract State Machines, Alloy, B and Z (ABZ 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5977))

Included in the following conference series:

Abstract

Identifying a minimal unsatisfiable core in an Alloy model proved to be a very useful feature in many scenarios. We extend this concept to hot core, an approximation to unsat core that enables the user to obtain valuable feedback when the Alloy’s sat-solving process is abruptly interrupted. We present some use cases that exemplify this new feature and explain the applied heuristics. The NP-completeness nature of the verification problem makes hot core specially appealing, since it is quite frequent for users of the Alloy Analyzer to stop the analysis when some time threshold is exceeded. We provide experimental results showing very promising outcomes supporting our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson, D.: Software abstractions: logic, language, and analysis. MIT Press, Cambridge (2006)

    Google Scholar 

  2. Een, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Google Scholar 

  3. Torlak, E., Chang, F., Jackson, D.: Finding minimal unsatisfiable cores of declarative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971, pp. 151–158. ACM, New York (1971)

    Chapter  Google Scholar 

  5. Sinz, C.: Visualizing sat instances and runs of the dpll algorithm. Journal of Automated Reasoning 39(2), 219–243 (2007)

    Article  MATH  Google Scholar 

  6. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Procs. of the 10th Conf. on Artificial Intelligence, pp. 440–446 (1992)

    Google Scholar 

  7. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. DIMACS Series in Discrete Mathematics and Theoretical Computer Science (1993)

    Google Scholar 

  8. Mazure, B., Saïs, L., Grégoire, É.: A powerful heuristic to locate inconsistent kernels in knowledge-based systems. In: IPMU 1996, pp. 1265–1269 (1996)

    Google Scholar 

  9. Grégoire, E., Mazure, B., Piette, C.: Boosting a complete technique to find mss and mus thanks to a local search oracle. In: Proceedings of IJCAI, pp. 2300–2305 (2007)

    Google Scholar 

  10. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

    Google Scholar 

  11. Andoni, A., Daniliuc, D., Khurshid, S., Marinov, D.: Evaluating the small scope hypothesis (2002), http://sdg.csail.mit.edu/pubs/2002/SSH.pdf

  12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  13. Silva, J.P.M., Sakallah, K.A.: GRASP – A new search algorithm for satisfiability. In: 1996 IEEE/ACM international conference on Computer-aided design, pp. 220–227. IEEE Computer Society, Washington (1997)

    Google Scholar 

  14. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)

    Google Scholar 

  15. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. Discrete Applied Mathematics 155(12), 1549–1561 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean formulas. In: Proceedings of SAT, vol. 3 (2003)

    Google Scholar 

  18. Bruni, R., Sassano, A.: Restoring satisfiability or maintaining unsatisfiability by finding small unsatisfiable subformulae. ENDM 9, 162–173 (2001)

    Google Scholar 

  19. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Galeotti, J.: Distributed sat-based analysis of object oriented code. In: Proceedings of Symposium on Automatic Program Verification (APV 2009), Rio Cuarto, Argentina, ETH Zurich (February 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Ippolito, N., Frias, M.F., Galeotti, J.P., Lanzarotti, E., Mera, S. (2010). Alloy+HotCore: A Fast Approximation to Unsat Core. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds) Abstract State Machines, Alloy, B and Z. ABZ 2010. Lecture Notes in Computer Science, vol 5977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11811-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11811-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11810-4

  • Online ISBN: 978-3-642-11811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics