Skip to main content

Code Synthesis for Timed Automata: A Comparison Using Case Study

  • Conference paper
Abstract State Machines, Alloy, B and Z (ABZ 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5977))

Included in the following conference series:

Abstract

There are two available approaches to automatically generate implementation code from timed automata model. The first approacch is implemented and attached to TIMES tool [1]. We will call this approach “TIMES approach”. While the second approach is based on using B-method [2] and its available code generation tool [3]. We will call this approach “B-method approach”. We select the model of the production cell to be used as a case study for the comparison between these two approaches. The same production cell model has been used against both approaches. The B-method approach generates platform independent code [4]. So we select the generated code using TIMES to be platform independent too for the comparison purpose. For the B-method approach, we use the deterministic semantic of timed automata which is used for TIMES code generation as given in [5]. This semantic controls the selection of the next executed function. The using of this deterministic mechanism is generally not needed for the code generated by the B-method approach. But we use it as it is the implemented mechanism for the TIMES approach. So we select to use it for comparison purpose. By running the implementation code generated using the B-method approach, it works fine as far as we run and no property violation could be found. On the other hand the code generated using TIMES approach runs successfully for the first 10 action transitions and then it progresses the time infinitely. This means that the system deadlocked, so it violates the first property of the model. While the first property is to guarantee that the system is deadlock free. This deadlock is due to the mishandling of the committed and urgent states [6]. The introduced comparison gave a result that the approach based on the using of B-method generates a verified code (by mean of simulation) and handles more timed automata features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.it.uu.se/research/group/darts/times/papers/manual.pdf

  2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  3. http://www.tools.clearsy.com/index.php5?title=Tutorial_ComenC

  4. Ayoub, A., Wahba, A., Salem, A., Taher, M., Sheirah, M.: Automatic Code Generation from Verified Timed Automata Model. To be appear in proceeding of IADIS Applied Computing, Italy (2009)

    Google Scholar 

  5. Amnell, T., Fersman, E., Pettersson, P., Sun, H., Yi, W.: Code Synthesis for Timed Automata. Nordic Journal of Computing 9(4) (2002)

    Google Scholar 

  6. http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ayoub, A., Wahba, A., Salem, A., Sheirah, M. (2010). Code Synthesis for Timed Automata: A Comparison Using Case Study. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds) Abstract State Machines, Alloy, B and Z. ABZ 2010. Lecture Notes in Computer Science, vol 5977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11811-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11811-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11810-4

  • Online ISBN: 978-3-642-11811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics