Skip to main content

Multiagent Reinforcement Learning Model for the Emergence of Common Property and Transhumance in Sub-Saharan Africa

  • Conference paper
Adaptive and Learning Agents (ALA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5924))

Included in the following conference series:

  • 679 Accesses

Abstract

We consider social phenomena as challenges and measures for learning in multi-agent scenarios for the following reasons: (i) social phenomena emerge through complex learning processes of groups of people, (ii) a model of a phenomenon sheds light onto the strengths and weaknesses of the learning algorithm in the context of the model environment. In this paper we use tabular reinforcement learning to model the emergence of common property and transhumance in Sub-Saharan Africa. We find that the Markovian assumption is sufficient for the emergence of property sharing, when (a) the availability of resources fluctuates (b) the agents try to maximize their resource intake independently and (c) all agents learn simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axelrod, R.: The Evolution of Cooperation Basic Books (1984)

    Google Scholar 

  2. Behnke, R., Scoones, I.: Rethinking range ecology: Implications for rangeland management in Africa. Int. Inst. for Envir. and Development Paper No. 33 (1992)

    Google Scholar 

  3. Epstein, J.M., Axtell, R.L.: Growing Artificial Societies: Social Science from the Bottom Up (Complex Adaptive Systems). The MIT Press, Cambridge (1996)

    Google Scholar 

  4. Gilbert, N., den Besten, M., Bontovics, A., Craenen, B.G.W., Divina, F., Eiben, A.E., Griffioen, R., Hévízi, G., Lõrincz, A., Paechter, B., Schuster, S., Schut, M., Tzolov, C., Vogt, P., Yang, L.: Emerging artificial societies through learning. J. of Artificial Societies and Social Simulation 9(2), 9 (2006)

    Google Scholar 

  5. Gintis, H.: Modeling cooperation among self-interested agents: a critique. The Journal of Socio-Economics 33, 695–714 (2004)

    Article  Google Scholar 

  6. Gyenes, V., Bontovics, Á., Lőrincz, A.: Factored temporal difference learning in the New Ties environment. Acta Cybernetica 18, 651–668 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968)

    Article  Google Scholar 

  8. Hulme, M., Kelly, M.: Exploring the links between desertification and climate change. Environment 76, 4–45 (1993)

    Article  Google Scholar 

  9. Kohler, T.A., Kresl, J., van West, C., Carr, E., Wilshusen, R.H.: Be there then: a modeling approach to settlement determinants and spatial efficiency among late ancestral pueblo populations of the Mesa Verde region, pp. 145–178. U.S. southwest Oxford University Press (2000)

    Google Scholar 

  10. König, A., Möhring, M., Troitzsch, K.G.: Agents, Hierarchies and Sustainability Agent Based Computational Demography. Physica, 197–210 (2002)

    Google Scholar 

  11. Lőrincz, A., Gyenes, V., Kiszlinger, M., Szita, I.: Mind model seems necessary for the emergence of communication. Neural Inf. Proc. Lett. Rev. 11, 109–121 (2007)

    Google Scholar 

  12. Rass, N.: Policies and strategies to adress the vulnerability of pastoralists in Sub-Saharan Africa. PPLPI Working Paper No. 37, FAO (2006)

    Google Scholar 

  13. Rouchier, J., Bousquet, F., Requier-Desjardins, M., Antona, M.: A multi-agent model for describing transhumance in North Cameroon: Comparison of different rationality to develop a routine. Journal of Economic Dynamics and Control 25, 527–559 (2001)

    Article  MATH  Google Scholar 

  14. Schelling, T.C.: Dynamic models of segregation. Journal of Mathematical Sociology 1, 143–186 (1971)

    Article  Google Scholar 

  15. Schultz, W.: Getting formal with dopamine and reward. Neuron 36, 241–263 (2002)

    Article  Google Scholar 

  16. Singh, S., Jaakkola, T., Littman, M., Szepesvári, C.: Convergence results for single-step on-policy reinforcement-learning algorithms. Machine Learning 38, 287–303 (2000)

    Article  MATH  Google Scholar 

  17. Smith, A.: The Wealth of Nations. Bantam Classics (March 2003)

    Google Scholar 

  18. Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Szita, I., Lőrincz, A.: Factored value iteration converges. Acta Cybernetica 18, 615–635 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Vlassis, N.: A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence. Morgan and Claypool Publishers (2007)

    Google Scholar 

  21. Wooldridge, M.: Introduction to MultiAgent Systems. John Wiley & Sons, Chichester (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pintér, B., Bontovics, Á., Lőrincz, A. (2010). Multiagent Reinforcement Learning Model for the Emergence of Common Property and Transhumance in Sub-Saharan Africa. In: Taylor, M.E., Tuyls, K. (eds) Adaptive and Learning Agents. ALA 2009. Lecture Notes in Computer Science(), vol 5924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11814-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11814-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11813-5

  • Online ISBN: 978-3-642-11814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics