Skip to main content

A Multiscale Morphological Binarization Algorithm

  • Conference paper
Computer Vision, Imaging and Computer Graphics. Theory and Applications (VISIGRAPP 2009)

Abstract

Image binarization is widely used to generate more appropriate images to be used in several image analysis and understanding systems, as well as to facilitate data management and decrease storage space requirements. The main difficulties arise from the fact that images are frequently degraded by noise and non-uniform illumination, for example. This paper presents an efficient morphological-based image binarization technique with scale-space properties that is able to cope with these problems. We evaluate the proposed approach for different classes of images, including text images such as historical and machine-printed documents, obtaining promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sahoo, P., Soltani, S., Wong, A.: A survey of thresholding techniques. Comput. Vision, Graphics and Image Processing 41(2), 233–260 (1988)

    Article  Google Scholar 

  2. Otsu, N.: A threshold selection method from grey-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 377–393 (1979)

    MathSciNet  Google Scholar 

  3. Niblack, W.: An Introduction to Digital Image Processing. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  4. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recognition 33, 225–236 (2000)

    Article  Google Scholar 

  5. Gatos, B., Pratikakis, I., Perantonis, S.: Adaptative degraded image binarization. Pattern Recognition 39, 317–327 (2006)

    Article  MATH  Google Scholar 

  6. Trier, O., Jain, A.: Goal-directed evaluation of binarization methods. IEEE Trans. Pattern Anal. Mach. Intell. 17, 1191–1201 (1995)

    Article  Google Scholar 

  7. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004)

    Article  Google Scholar 

  8. Witkin, A.P.: Scale-space filtering: a new approach to multi-scale description. In: Image Understanding, pp. 79–95. Ablex, Greenwich (1984)

    Google Scholar 

  9. Bosworth, J., Acton, S.: Morphological scale-space in image processing. Digital Signal Processing 13, 338–367 (2003)

    Article  Google Scholar 

  10. Jackway, P.T., Deriche, M.: Scale-space properties of the multiscale morphological dilation-erosion. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 38–51 (1996)

    Article  Google Scholar 

  11. Dorini, L.E.B., Leite, N.J.: A scale-space toggle operator for morphological segmentation. In: 8th ISMM, pp. 101–112 (2007)

    Google Scholar 

  12. Dorini, L.E.B., Leite, N.J.: Multiscale image representation using scale-space theory. In: XXXI Congresso Nacional de Matemática Aplicada e Computacional, pp. 103–110 (2008)

    Google Scholar 

  13. Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognition 7, 53–58 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bernsen, J.: Dynamic thresholding of grey-level images. In: International Conference on Pattern Recognition, pp. 1251–1255 (1986)

    Google Scholar 

  15. Serra, J., Vicent, L.: An overview of morphological filtering. Circuits, Systems and Signal Processing 11(1), 47–108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Maragos, P., Meyer, F.: A pde approach to nonlinear image simplification via levelings andreconstruction filters. In: International Conference on Image Processing, pp. 938–941 (2000)

    Google Scholar 

  17. Wellner, P.: Adaptive thresholding for the digital desk. Technical Report EPC1993-110, Xerox (1993)

    Google Scholar 

  18. ABBYY (2008), http://www.finereader.com

  19. Dorini, L.E.B., Simões, N.C., Leite, N.J.: A scale-dependent morphological approach to motion segmentation. In: IWSSIP, pp. 122–125 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorini, L.B., Leite, N.J. (2010). A Multiscale Morphological Binarization Algorithm. In: Ranchordas, A., Pereira, J.M., Araújo, H.J., Tavares, J.M.R.S. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2009. Communications in Computer and Information Science, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11840-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11840-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11839-5

  • Online ISBN: 978-3-642-11840-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics