Skip to main content

An Interactive Fluid Model of Jellyfish for Animation

  • Conference paper
Computer Vision, Imaging and Computer Graphics. Theory and Applications (VISIGRAPP 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 68))

Abstract

We present an automatic animation system for jellyfish that is based on a physical simulation. We model the thrust of an adult jellyfish, and the organism’s morphology in its most active mode of locomotion. We reduce our model by considering only species that are axially symmetric so that we can approximate the full 3D geometry of a jellyfish with a 2D simulation. We simulate the organism’s elastic volume with a spring-mass system, and the surrounding sea water using the semi-Lagrangian method. We couple the two representations with the immersed boundary method. We propose a simple open-loop controller to contract the swimming muscles of the jellyfish. A 3D rendering model is extrapolated from our 2D simulation. We add variation to the extrapolated 3D geometry, which is inspired by empirical observations of real jellyfish. The resulting animation system is efficient with an acceptable compromise in physical accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, D.J.: Elementary Fluid Dynamics. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  2. Arai, M.N.: A Functional Biology of Scyphozoa. Chapman and Hall, London (1997)

    Google Scholar 

  3. Beer, R.D., Quinn, R.D., Chiel, H.J., Ritzmann, R.E.: Biologically inspired approaches to robotics: what can we learn from insects? Commun. ACM 40(3), 30–38 (1997)

    Article  Google Scholar 

  4. Cummins, R.H.: My best pictures and movies from marine ecology (1999), http://www.junglewalk.com/popup.asp?type=v&AnimalVideoID=759

  5. Dabiri, J.O., Gharib, M.: Sensitivity analysis of kinematic approximations in dynamic medusan swimming models. Journal of Experimental Biology 206, 3675–3680 (2003)

    Article  Google Scholar 

  6. Daniel, T.L.: Mechanics and energetics of medusan jet propulsion. Canadian Journal of Zoology 61, 1406–1420 (1983)

    Article  Google Scholar 

  7. Dean, T., Wellman, M.: Planning and Control. Morgan Kaufmann Publishers, San Francisco (1991)

    Google Scholar 

  8. Desbrun, M., Gascuel, M.P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: Proceedings of the Eurographics workshop on Computer animation and simulation 1996, pp. 61–76. Springer, New York (1996)

    Google Scholar 

  9. Fröhlich, T.: The virtual oceanarium. Commun. ACM 43(7), 94–101 (2000)

    Article  Google Scholar 

  10. Gladfelter, W.B.: Structure and function of the locomotory system of polyorchis montereyensis (cnidaria, hydrozoa). Helgolaender Wiss. Meeresunters 23, 38–79 (1972)

    Article  Google Scholar 

  11. Griebel, M., Dornseifer, T., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics: a practical introduction. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Google Scholar 

  12. Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 973–981. ACM, New York (2005)

    Chapter  Google Scholar 

  13. Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletics. In: Proceedings of SIGGRAPH 1995, pp. 71–78. ACM Press, New York (1995)

    Chapter  Google Scholar 

  14. Megill, W.M.: The biomechanics of jellyfish swimming, Ph.D. Dissertation, Department of Zoology, University of British Columbia (2002)

    Google Scholar 

  15. Miller, G.S.P.: The motion dynamics of snakes and worms. In: Proceedings of SIGGRAPH 1988, pp. 169–173. ACM Press, New York (1988)

    Google Scholar 

  16. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., Gross, M.: Interaction of fluids with deformable solids: Research articles. Comput. Animat. Virtual Worlds 15(3-4), 159–171 (2004)

    Article  Google Scholar 

  17. Michiel van de Panne, E.F.: Sensor-actuator networks. In: Proceedings of SIGGRAPH 1993, pp. 335–342. ACM Press, New York (1993)

    Chapter  Google Scholar 

  18. Perlin, K.: Improving noise. In: Proceedings of SIGGRAPH 2002, pp. 681–682. ACM Press, New York (2002)

    Chapter  Google Scholar 

  19. Peskin, C.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pixar Animation Studios, W.D.P.: Finding Nemo motion picture. DVD (2003)

    Google Scholar 

  21. Raibert, M.H., Hodgins, J.K.: Animation of dynamic legged locomotion. In: Proceedings of SIGGRAPH 1991, pp. 349–358. ACM Press, New York (1991)

    Chapter  Google Scholar 

  22. Rasmussen, N., Nguyen, D.Q., Geiger, W., Fedkiw, R.: Smoke simulation for large scale phenomena. ACM Trans. Graph. 22(3), 703–707 (2003)

    Article  Google Scholar 

  23. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 papers, pp. 1–9. ACM, New York (2008)

    Chapter  Google Scholar 

  24. Sanctuary, F.K.N.M.: NOAA’s Coral Kingdom Collection: reef2547 (2007), http://www.photolib.noaa.gov/htmls/reef2547.htm

  25. Shih, C.T.: A Guide to the Jellyfish of Canadian Atlantic Waters. No. 5, National Museum of Natural Sciences, Ottawa, Canada (1977)

    Google Scholar 

  26. Spencer, A.N.: The physiology of a coelenterate neuromuscular synapse. Journal of Comparative Physiology 148, 353–363 (1982)

    Article  Google Scholar 

  27. Stam, J.: Stable fluids. In: Proceedings of SIGGRAPH 1999, pp. 121–128. ACM Press/Addison-Wesley Publishing Co., New York (1999)

    Chapter  Google Scholar 

  28. Stockie, J.M., Wetton, B.R.: Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes (1999)

    Google Scholar 

  29. Sullivan, B.K., Suchman, C.L., Costello, J.H.: Mechanics of prey selection by ephyrae of the scyphomedusa aurelia aurita. Marine Biology 130(2), 213–222 (1997)

    Article  Google Scholar 

  30. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proceedings of SIGGRAPH 1987, pp. 205–214. ACM Press, New York (1987)

    Chapter  Google Scholar 

  31. Tu, X., Terzopoulos, D.: Artificial fishes: Physics, locomotion, perception, behavior. Computer Graphics 28, 43–50 (1994), http://citeseer.nj.nec.com/tu94artificial.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rudolf, D., Mould, D. (2010). An Interactive Fluid Model of Jellyfish for Animation. In: Ranchordas, A., Pereira, J.M., Araújo, H.J., Tavares, J.M.R.S. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2009. Communications in Computer and Information Science, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11840-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11840-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11839-5

  • Online ISBN: 978-3-642-11840-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics