Abstract
The bottleneck of most data analyzing systems, signal processing systems, and intensive computing systems is matrix decomposition. The Cholesky factorization of a sparse matrix is an important operation in numerical algorithms field. This paper presents a Multi-phased Parallel Cholesky Factorization (MPCF) algorithm, and then gives the implementation on a multi-core machine. A performance result shows that the system can reach 85.7 Gflop/s on a single PowerXCell processor and bulk of computation can reach to 94% of peak performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dongarra, J.J., Duff, L.S., Sorensen, D.C., Van der Vorst, H.A.: Numerical Linear Algebra for High Performance Computers. SIAM, Philadelphia (1998)
Kurzak, J., Dongarraa, J.J.: Implementing linear algebra routines on multi-core processors with pipelining and a look-ahead. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 147–156. Springer, Heidelberg (2007)
Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures, UT-CS-07-600, September 7 (2007) (also as LAPACK Working Note #191)
Michael, T.: Heath Prof. Parallel Numerical Algorithms. Cholesky Factorization, ch. 7, http://www.cse.illinois.edu/courses/cs554/notes/07_Cholesky.pdf
Bai-Ling, W., Jia-Ming, P., et al.: Parallel SVD of Bidiagonal Matrix on PowerXCellTM 8i Processor. In: Workshop on Cell Systems and Applications, Beijing, June 21- 22 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, B., Ge, N., Peng, H., Wei, Q., Li, G., Gong, Z. (2010). Design and Implementation of Parallelized Cholesky Factorization. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W. (eds) High Performance Computing and Applications. Lecture Notes in Computer Science, vol 5938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11842-5_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-11842-5_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11841-8
Online ISBN: 978-3-642-11842-5
eBook Packages: Computer ScienceComputer Science (R0)