Skip to main content

A Method for Querying Conserved Subnetwork in a Large-Scale Biomolecular Network

  • Conference paper
High Performance Computing and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5938))

  • 2405 Accesses

Abstract

To uncover conserved pathways using systems biology methods, comparing various kinds of networks among different species or within a species becomes an increasingly important problem. With more and more molecular data being available, most of the current methods cannot deal with the large-scale networks owing to the computational scale limitation on a single PC or workstation. In this paper, we adopted an Immediate Neighbors-in-first Method for the biomolecular network querying problem. In contrast to other methods, we developed the parallel computing algorithm to treat large-scale networks. The efficient parallel performance of the present method is shown by Parkinson’s Disease related protein interaction network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, S.H., Zhang, X.S., Chen, L.: Biomolecular network querying: a promising approach in systems biology. BMC Systems Biology 2, 5 (2008)

    Article  Google Scholar 

  2. Zhao, X.M., Wang, R.S., Chen, L.N., Aihara, K.: Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucl. Acids Res. 36(9), e48 (2008)

    Article  Google Scholar 

  3. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24(4), 427–433 (2006)

    Article  Google Scholar 

  4. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Research, w83–w88 (2004)

    Google Scholar 

  5. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. PNAS 102(6), 1974–1979 (2005)

    Article  Google Scholar 

  6. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. PNAS 100(20), 11394–11399 (2003)

    Article  Google Scholar 

  7. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

    Article  Google Scholar 

  8. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics 7, 199 (2006)

    Article  Google Scholar 

  9. Tohsato, Y., Matsuda, H., Hashimoto, A.: A Multiple Alignment Algorithm for Metabolic Pathway Analysis Using Enzyme Hierarchy. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 376–383. AAAI Press, Menlo Park (2000)

    Google Scholar 

  10. Pawlowski, K., Jaroszewski, L., Rychlewski, L., Godzik, A.: Sensitive sequence comparison as protein function predictor. In: Pac. Symp. Biocomput., pp. 42–53 (2000)

    Google Scholar 

  11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local Alignment Search Tool. Journal of Molecular Biology 215, 403–410 (1990)

    Google Scholar 

  12. Heymans, M., Singh, A.K.: Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics 19, i138–i146 (2003)

    Article  Google Scholar 

  13. Heymans, M., Singh, A.K.: Building phylogenetic trees from the similarity analysis of metabolic pathways. Department of Computer Science, University of California, Santa, Barbara, 2002-33 (2002)

    Google Scholar 

  14. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910–913 (2002)

    Article  Google Scholar 

  15. Deane, C.M., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein interactions: two methods for assessment of the reliability of high throughput observations. Molecular Cell Proteomics 1(5), 349–356 (2002)

    Article  Google Scholar 

  16. Bandyopadhyay, S., Sharan, R., Ideker, T.: Systematic identification of functional orthologs based on protein network comparison. Genome Research 16, 428–435 (2006)

    Article  Google Scholar 

  17. He, H., Singh, A.K.: Closure-Tree: An Index Structure for Graph Queries. In: ICDE 2006: Proceedings of the 22nd International Conference on Data Engineering, p. 38. IEEE Computer Society, Washington (2006)

    Google Scholar 

  18. Xie, J.: Numerical simulation of protein interaction network. Doctoral thesis of Shanghai University (2008)

    Google Scholar 

  19. Mishra, G., Suresh, M., Kumaran, K., Kannabiran, N.: Human Protein Reference Database - 2006 update. Nucleic Acids Research 34, D411–D414 (2006)

    Article  Google Scholar 

  20. Xie, J., Zhang, X., Zhang, W.: PSE-Bio: a grid enabled problem solving environment for bioinformatics. In: Proceedings of the Third IEEE International Conference on e-science and Grid Computing, pp. 529–535 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, J. et al. (2010). A Method for Querying Conserved Subnetwork in a Large-Scale Biomolecular Network. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W. (eds) High Performance Computing and Applications. Lecture Notes in Computer Science, vol 5938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11842-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11842-5_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11841-8

  • Online ISBN: 978-3-642-11842-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics