
Incremental Learning in Inductive Programming

Robert Henderson
University of Edinburgh, UK

robh93@googlemail.com

Abstract
Inductive programming systems characteristically exhibit an
exponential explosion in search time as one increases the
size of the programs to be generated. As a way of over-
coming this, we introduce incremental learning, a process in
which an inductive programming system automatically mod-
ifies its inductive bias towards some domain through solving
a sequence of gradually more difficult problems in that do-
main.

We demonstrate a simple form of incremental learning
in which a system incorporates solution programs into its
background knowledge as it progresses through a sequence
of problems. Using a search-based inductive functional pro-
gramming system modelled on the MagicHaskeller system
of Katayama (2007), we perform a set of experiments com-
paring the performance of inductive programming with and
without incremental learning. Incremental learning is shown
to produce a performance improvement of at least a fac-
tor of thirty on each of the four problem sequences tested.
We describe how, given some assumptions, inductive pro-
gramming with incremental learning can be shown to have
a polynomial, rather than exponential, time complexity with
respect to the size of the program to be generated. We discuss
the difficulties involved in constructing suitable problem se-
quences for our incremental learning system, and consider
what improvements can be made to overcome these difficul-
ties.

Keywords Inductive programming, Inductive functional
programming, Incremental learning

1. Introduction
Inductive Programming (IP) differs from more conventional
machine learning techniques in that it features the use of a
general, expressive programming language as a space of hy-
potheses for describing patterns in data. Herein lies both the
attraction and the apparent downfall of IP: having such an
expressive hypothesis space allows IP to be used to model
complex or recursive patterns that simply cannot be rep-
resented with the more conventional methods (feedforward
neural networks or decision trees, for example). On the other
hand, this expressivity also means that IP methods can be-
come intractable very quickly when applied to larger prob-

lems. State of the art IP systems such as ADATE (Ols-
son 1995), Igor II (Kitzelmann 2007), and MagicHaskeller
(Katayama 2007) have shown promise on relatively simple
arithmetic and list processing problems, but are not currently
capable of synthesising the kinds of complex programs that
realistic practical applications would demand. See Hofmann
et al. (2009) for a recent evaluation of the capabilities of
these systems.

How can we solve this dilemma, and get the benefits of a
general, expressive hypothesis space as well as a method
that is computationally tractable? It has been proposed
(Solomonoff 2002; Schmidhuber 2004) that combining IP
with incremental learning may provide a solution. An incre-
mental learning system is one that can automatically modify
its inductive bias towards a given domain through solving a
sequence of successively more difficult problems in that do-
main. In other words, incremental learning is about gaining
the expertise required to solve hard problems through the
experience of solving easier ones. If successfully equipped
with an incremental learning mechanism, a system should
be able to learn to solve complex problems without the need
for a human expert to hand-code extensive domain-specific
knowledge or algorithms into its workings.

In this paper we present experimental evidence that in-
cremental learning is a viable means for producing orders of
magnitude performance improvements in IP. We start with
a review of previous work in IP that features incremental
learning (section 2). We then describe the particular incre-
mental learning mechanism to be evaluated here (section 3),
and give an overview of the IP system that was used in our
experiments (section 4). We present the experiments them-
selves along with their results, and give an explanation for
these results in the form of a computational complexity ar-
gument (section 5). Finally, we discuss the limitations of our
chosen incremental learning mechanism, and consider what
improvements are required before it can be of practical use
(section 6).

2. Previous work
Quinlan and Cameron-Jones (1993) were probably the first
to demonstrate a form of incremental learning in an IP con-
text. They showed how their inductive logic programming
system, FOIL, was able to solve more than half of the prob-



lems in a sequence of 18 textbook logic programming ex-
ercises presented to it in order of gradually increasing dif-
ficulty. This was made possible by having the system add
each solution program to its background knowledge as it
went along. It could therefore potentially re-use solutions to
earlier problems as primitive elements in the construction of
solutions to later problems.

More recently, Schmidhuber et al. (1997) studied an in-
cremental learning mechanism which they termed ‘adaptive
Levin search’. The idea behind adaptive Levin search is that,
in a search-based IP system, the inductive bias can be con-
trolled by weighting the different programming language
primitives according to how frequently they should be used.
As a system solves a succession of problems, these weights
are gradually modified according to how often each prim-
itive actually occurs in solution programs. Thus, the sys-
tem becomes biased towards re-using primitives that were
present in successful programs in the past. Adaptive Levin
search was shown to produce some performance improve-
ment on a selection of simple problem sequences.

Schmidhuber (2004) later followed up the work on adap-
tive Levin search with a fully fledged incremental learning IP
system called OOPS. OOPS supported both a weight modi-
fication mechanism with a similar role to the one in adaptive
Levin search, as well as an ability to invoke chunks of code
from past programs in solutions to new problems. However,
in the problem sequence that Schmidhuber tested, which in-
volved solving the general ‘towers of Hanoi’ problem, only
the weight modification mechanism was shown to provide a
direct performance benefit.

Khan et al. (1998) made a brief study into incremental
learning in inductive logic programming, under the name of
‘repeat learning’. Using the Progol inductive logic program-
ming system, they demonstrated how helper predicates in-
vented in order to solve one problem may be re-used when
constructing the solution to another. They chose a problem
domain concerning the inference of the general descriptions
of moves in chess.

In this paper, we have chosen to focus on the kind of in-
cremental learning mechanism that was employed in FOIL,
that in which a system adds solution programs to its back-
ground knowledge as it progresses through a problem se-
quence. As we shall see, this simple method is remarkably
powerful. The main drawback of Quinlan’s and Cameron-
Jones’ short study is that they did not provide a direct com-
parison between scenarios with and without incremental
learning. We shall remedy that with the experiments pre-
sented here.

3. Incremental learning mechanism
We aim to give a convincing demonstration of one simple
but effective incremental learning mechanism. The mecha-
nism works as follows: a sequence of successively more dif-
ficult, but related, problems is presented to an IP system. The

system must solve the problems in the order given, and will
incorporate each solution program into its object language
as a new primitive function (i.e. into its background knowl-
edge) as it goes along. This addition of these new functions
to the system’s object language is what constitutes the mod-
ification of its inductive bias. For an appropriately designed
problem sequence, we would expect the time taken for the
system to solve whole the sequence, with the help of incre-
mental learning, to be much less than if it were tasked simply
with solving the final problem of the sequence in isolation.

One can see how this mechanism might be expected to
work effectively by considering how, particularly in func-
tional programming, it is often natural to express the solu-
tion to a complex problem in terms of the solutions to one
or more simpler problems already solved. This breaks the
program down into smaller, more managable units, and is a
technique commonly known as procedural abstraction when
used by human programmers.

4. Implementation
We implemented, for the purpose of this study, a sim-
ple brute-force search based IP system modelled on the
MagicHaskeller system of Katayama (2007). We shall re-
fer to our implemented system as ‘MagicLisper’ (it was
written in Common Lisp). In this section, we first review
MagicHaskeller and explain our reasons for choosing it, then
we describe how our system differs from MagicHaskeller in
a few respects. We also talk through an example usage of
our system on an IP problem.

4.1 Review of MagicHaskeller
MagicHaskeller is a search-based inductive functional pro-
gramming system that infers programs from input-output
training examples. Its main distiguishing feature is the brute-
force algorithm that it uses to synthesise solution programs.
More or less, it simply generates and tests all possible pro-
grams in its object language in order of length, using a
breadth-first search, until it finds one that matches the train-
ing examples. This is tractable because of two features of
MagicHaskeller’s object language. Firstly, the language is
strongly typed, with only type-consistent programs being
considered by the search algorithm. Secondly, recursion is
supported not explicitly, but via the use of certain of higher-
order primitive operations known as morphisms (Augusteijn
1998). These morphisms are essentially generalisations of
standard functional programming operations such as map
and reduce, and with them, many useful recursive processes
can be expressed concisely. Ultimately, these two features
combine to produce a search space that contains rather few
obviously useless programs, allowing brute-force search to
fare well.

For this investigation into incremental learning, we chose
to use a system based on MagicHaskeller for two rea-
sons. Firstly, MagicHaskeller’s search algorithm is fast;



synthesising simple recursive programs takes only a mat-
ter of seconds. Secondly, the search algorithm is sim-
ple and predictable; it is easy to understand exactly why
MagicHaskeller succeeds or fails in finding a solution to a
given problem, which helps immensely when one is design-
ing problem specifications. It is for this second reason in
particular that we chose MagicHaskeller as our base rather
than an alternative such as ADATE or Igor II.

4.2 Differences between our system and
MagicHaskeller

The object language of MagicLisper has the same form
as the ‘de Bruijn lambda calculus’ language used in the
version of MagicHaskeller described in (Katayama 2007).
There is one significant structural difference: for the sake
of simplicity, MagicLisper’s type system does not support
parametric polymorphism; instead, every primitive function
in its object language has one or more explicit ground types.
The default library of primitive functions and constants used
by MagicLisper is given in table 1. Also see figure 1 for
precise definitions of the morphism primitives.

In this paper we shall use a Lisp-style notation to rep-
resent programs. So, for example, the following program
(sum-elems), which sums the elements of a list, in Haskell
notation:

(\ a1 -> paralist (\ a2 a3 a4 -> + a4 a2) a1 0)

is written in the Lisp notation as:

(λ (a1) (paralist (λ (a2 a3 a4) (+ a4 a2)) a1 0))

MagicHaskeller searches through programs in order of
length, or more precisely, it searches through programs in
order of the total number of functor and lexical variable in-
vocations they contain. In MagicLisper, we generalise on
this process by requiring that primitive functors each be as-
signed a numerical weight. Programs are synthesised in or-
der of total weight, this being the sum of the weights of their
component functor and lexical variable invocations. Lexical
variables always receive a weight of 0.4. The weights of the
default primitive functors range between 2.0 and 4.5 (see ta-
ble 1). As an example of how to calculate the total weight
of a program, consider the sum-elems program mentioned
above, which has a weight of 12:

paralist + a4 a2 a1 0 Total
Weight 4.0 3.4 0.4 0.4 0.4 3.4 12

Note that symbols occuring in lambda parameter lists do not
contribute to the calculation.

The weighting feature allows one to manually bias the
system towards using certain primitives by assigning them
lower weights. This extra flexibility allows our system to po-
tentially handle a larger primitive library than MagicHaskeller,
since more rarely used primitives can be given higher
weights to minimise their negative impact on the search per-
formance. Note that if one sets all the weights to the same
value, our search algorithm reduces to that of MagicHaskeller.

In this study, the weights were chosen by hand; however, we
note that for a more advanced system it would make sense to
have these weights tuned automatically. To justify our choice
of weight values, we have tested MagicLisper’s performance
on a selection of nine non-incremental problems, both with
and without the customised weights (table 2). The problems
all exhibit a significant increase in solution speed due to the
custom weights, ranging from a factor of 2.4 to a factor of
165.7.

MagicLisper does not employ the memoisation or fusion
rule optimisations of MagicHaskeller. Finally, MagicLisper
requires the user to explicitly specify the maximum number
of ‘steps’ for which to test any candidate solution program
on a given training example. Each step corresponds to one
evaluation by the interpreter of a sub-expression within a
program, and this ‘number of steps’ is an approximate speci-
fication of the maximum time to spend testing each program.

4.3 Example usage of our system
Let us briefly look at MagicLisper in action on a simple
problem. Consider the following specification for a function
which finds the length of a list:

() → 0 [10 steps]
(8) → 1 [20 steps]
(10 4 7 2) → 4 [50 steps]

To solve this, MagicLisper first determines the type of the
program implied by the specification: in this case, it is a
function mapping a list of integers to an integer. It then per-
forms an iterative deepening search through the space of pro-
grams matching that type; on the nth iteration, it generates
and tests programs whose total weight is less than or equal
to n. When testing a program, MagicLisper runs it on each
training input in turn, for no more than the specified num-
ber of steps in each case. The whole search finishes when
MagicLisper finds the program with the smallest weight that
satisfies all of the training examples, which is in this case:

(λ (a1) (paralist (λ (a2 a3 a4) (inc a4)) a1 0))

The above program has a weight of 11.6, so is found on the
12th search iteration.

5. Incremental learning experiments
In this section, we describe a set of experiments with Mag-
icLisper that demonstrate the incremental learning mecha-
nism of section 3, that in which solution programs are suc-
cessively added to the system’s object language as new prim-
itives.

5.1 Method and results
We measured the performance of MagicLisper on four prob-
lem sequences, both with and without the aid of incremen-
tal learning in each case. Full specifications of these prob-
lem sequences along with the experimental results are given
in figures 2, 3, 4, and 5. Each specification consists of a



Name Type Weight
— The empty list —

nil list 2.1
— List operations —

cons (λ (int list) list) 2.1
car (λ (list) int) 3.2
cdr (λ (list) list) 3.2

— Integer constants —
0 int 3.4
1 int 3.4

— Integer operations —
inc (λ (int) int) 3.4
dec (λ (int) int) 3.4
+ (λ (int int) int) 3.4
* (λ (int int) int) 3.4

— If-then-else —
if (λ (bool int int) int) 2.5
if (λ (bool list list) list) 2.5

— Boolean constants —
t bool 3.5
f bool 3.5

— Boolean operations —
not (λ (bool) bool) 3.5
and (λ (bool bool) bool) 3.5
or (λ (bool bool) bool) 3.5

— Integer comparions operations —
eql (λ (int int) bool) 2.0
< (λ (int int) bool) 2.0

— Morphisms —
paranat (λ ((λ (int int) int) int int) int) 4.0
paranat (λ ((λ (int list) list) int list) list) 4.0
paranat (λ ((λ (int bool) bool) int bool) bool) 4.0
paralist (λ ((λ (int list int) int) list int) int) 4.0
paralist (λ ((λ (int list list) list) list list) list) 4.0
paralist (λ ((λ (int list bool) bool) list bool) bool) 4.0
analist (λ ((λ (list) list) list) list) 4.5

Table 1. The default library of primitive functions and constants used by MagicLisper. The type system consists of: integers
(int), lists of integers (list), and booleans (bool). A compound type expression of the form: (λ (a b ...) r) represents
a function whose argument types are a, b, etc., and whose return type is r. The role of the weights is to bias the system towards
using certain primitives more than others when constructing programs; primitives with lower weights are used more frequently
(see section 4.2).



(define (paranat f n x)
(if (zero? n)

x
(f (- n 1) (paranat f (- n 1) x))))

(define (paralist f lst x)
(if (null? lst)

x
(f (car lst) (cdr lst) (paralist f (cdr lst) x))))

(define (analist f lst)
(let ((pair (f lst)))
(if (null? pair)

’()
(cons (car pair) (analist f (cdr pair))))))

Figure 1. Definitions of MagicLisper’s morphism primitives given in the Scheme dialect of Lisp: natural number paramor-
phism, list paramorphism, and list anamorphism.

Name Description Time / s Time / s Speed-up
(custom weights) (uniform weights) factor

append Appends two lists together. < 0.1 14.5 > 145.0
make-list Constructs the list of n instances of a given value. 0.1 13.3 133.0
length Finds the length of a list. 0.2 1.9 9.5
sum-elems Finds the sum of the elements in a list. 0.5 19.9 39.8
evenp Tests if a given integer is even. 0.7 1.7 2.4
nth Finds the nth element of a list. 0.9 26.0 28.9
last-elem Finds the last element of a list. 1.5 248.5 165.7
member Tests if a given value is a member of a list. 6.7 > 251.4 > 37.5
pow Raises one integer to the power of another. 9.6 31.2 3.3

Table 2. Some typical problems that MagicLisper can solve without the aid of incremental learning. In each case, between
3 and 5 training examples were given. Solution times were measured in two different scenarios: ‘custom weights’, in which
the lexical variable and primitive weights were set up as described in section 4.2, and ‘uniform weights’, in which the lexical
variable and primitive weights were all set to the value 1. The ‘speed-up factor’ column gives the proportional increase in speed
due to the custom weights: time (uniform weights) divided by time (custom weights). The measurements were made on a 2
GHz Intel Core II Duo desktop PC with 2 GB of RAM running GNU CLISP.

main problem, and a sequence of sub-problems whose so-
lutions may act as building blocks out of which the solu-
tion to the main problem can be constructed. For example,
in the sort problem sequence (figure 4) we tasked our sys-
tem with inferring an algorithm to sort a list of numbers.
Sub-problems included the simpler but related task of tak-
ing the smallest element out of a list and bringing it to the
front (extract-least-elem), and the yet simpler tasks of
finding the smallest element in a list (least-elem), and of
removing a given element from a list (remove-elem).

When designing the problem sequences, we used our
knowledge of how one might implement the solution pro-
grams by hand in order to choose appropriate sub-problems.
We also used some degree of trial and error in tweaking
the problem sequences until incremental learning worked

effectively (for example, remove-first-block was orig-
inally the first stage in our design for the block-lengths
problem sequence; we added an extra stage, car-p, when
it became apparent that our system was taking too long to
solve remove-first-block from the default starting con-
ditions). For now, let us emphasise the point that readily
comprehensible and effective problem breakdowns often ex-
ist. In the next section (6) we shall consider in detail the issue
of how much human effort is required to produce these prob-
lem breakdowns, as well as what ways can be developed to
reduce or remove the need for this human effort.

For every problem and sub-problem, in order to obtain
some guarantee that the program found was indeed the cor-
rect general solution, we checked it against a set of test ex-
amples. When designing our problem specifications, if any



deref-list: dereferences a list of indices into another list.
— Training examples —
(), (7) → () [20 steps]
(0), (6) → (6) [50 steps]
(1 0 2), (8 6 4 5) → (6 8 4) [200 steps]
— Test examples —
(3 2 2 1 3 4 0 5), (77 42 3 −10 8 61) →

(−10 3 3 42 −10 8 77 61)
(8 4 7), (9 5 2 5 8 4 1 9 1 7) →

(1 8 9)

Incremental specification

1. nth: returns the nth element of a list.
— Training examples —
0, (5) → 5 [15 steps]
1, (8 6) → 6 [30 steps]
3, (4 10 77 34 58) → 34 [150 steps]
— Test examples —
8, (8 4 9 3 7 1 9 2 5 4 7) → 5
4, (11 23 45 15 27 89 102 56) → 27

2. deref-list

Results

Stage Time / s Depth Solution
nth 0.9 12 (λ (a1 a2) (car (paranat (λ (a3 a4) (cdr a4)) a1 a2)))

deref-list 3.6 13 (λ (a1 a2) (paralist (λ (a3 a4 a5) (cons (nth a3 a2) a5)) a1 nil))

Total 4.5

Non-incremental: TIMEOUT (950.2 seconds, depth 18)

Figure 2. The deref-list problem sequence: specification and results.

reverse: reverses a list.
— Training examples —
() → () [20 steps]
(8) → (8) [40 steps]
(3 7) → (7 3) [150 steps]
(9 4 7 1) → (1 7 4 9) [800 steps]
— Test examples —
(2 9 1 7 −3 4 8 9 10 12) →

(12 10 9 8 4 −3 7 1 9 2)
(6 4 5 2 1 1 1 8 2) →

(2 8 1 1 1 2 5 4 6)

Incremental specification

1. append-elem: appends an element to the end of a list.
— Training examples —
8, () → (8) [15 steps]
4, (9) → (9 4) [30 steps]
7, (3 8 1) → (3 8 1 7) [100 steps]
— Test examples —
6, (4 7 1 3 9 8 6) → (4 7 1 3 9 8 6 6)
3, (8 8 8 8 8) → (8 8 8 8 8 3)

2. reverse

Results

Stage Time / s Depth Solution
append-elem 1.0 12 (λ (a1 a2) (paralist (λ (a3 a4 a5) (cons a3 a5)) a2 (cons a1 nil)))

reverse 0.1 10 (λ (a1) (paralist (λ (a2 a3 a4) (append-elem a2 a4)) a1 nil))

Total 1.1

Non-incremental: SOLUTION FOUND (569.6 seconds, depth 19)
(λ (a1) (paralist (λ (a2 a3 a4) (paralist (λ (a5 a6 a7) (cons a5 a7)) a4 (cons a2 nil))) a1 nil))

Figure 3. The reverse problem sequence: specification and results.



sort: sorts a list of integers in ascending order.
— Training examples —
() → () [30 steps]
(7) → (7) [100 steps]
(4 2) → (2 4) [500 steps]
(9 8 7) → (7 8 9) [2000 steps]
(3 2 3 2 3) → (2 2 3 3 3) [10000 steps]
— Test examples —
(10 6 −30 7 2 5 −2 3 1 6 4) →

(−30 −2 1 2 3 4 5 6 6 7 10)
(1 1 1 8 6 8 6 4 3 3 1 1) →

(1 1 1 1 1 3 3 4 6 6 8 8)
(10 2 105 −78 46 45 23) →

(−78 2 10 23 45 46 105)

Incremental specification

1. remove-elem: removes the first instance of a given ele-
ment from a list.
— Training examples —
6, (6) → () [15 steps]
7, (8 7) → (8) [30 steps]
3, (3 3) → (3) [30 steps]
10, (2 4 10 7 2 1) → (2 4 7 2 1) [200 steps]
— Test examples —
43, (9 56 43 2 7) → (9 56 2 7)
8, (6 8 4 8 2 8) → (6 4 8 2 8)
9, (7 5 2 9) → (7 5 2)

2. min: returns the smaller of two integers.
— Training examples —
2, 1 → 1 [10 steps]
3, 10 → 3 [10 steps]
7, 7 → 7 [10 steps]
— Test examples —
−5, −10 → −10
−3, 20 → −3
27, 27 → 27

3. least-elem: returns the smallest element in a list of
integers.
— Training examples —
(3) → 3 [20 steps]
(8 4 7) → 4 [100 steps]
(9 6 2 9 2) → 2 [200 steps]
— Test examples —
(10 7 45 5 7 8) → 5
(77 34 59 34 208) → 34

4. extract-least-elem: brings the smallest element to front
of a list of integers.
— Training examples —
(8) → (8) [50 steps]
(10 4) → (4 10) [200 steps]
(8 6 2 7 2 5) → (2 8 6 7 2 5) [2000 steps]
— Test examples —
(3 2 1 2 3) → (1 3 2 2 3)
(54 70 14 59 14 20) → (14 54 70 59 14 20)

5. sort

Results

Stage Time / s Depth Solution
remove-elem 7.8 14 (λ (a1 a2) (paralist (λ (a3 a4 a5) (if (eql a3 a1) a4 (cons a3 a5))) a2 a2))

min 0.0 7 (λ (a1 a2) (if (< a2 a1) a2 a1))

least-elem 0.7 13 (λ (a1) (paralist (λ (a2 a3 a4) (min a4 a2)) a1 (car a1)))

extract-least-elem 3.3 14 (λ (a1) (cons (least-elem a1) (remove-elem (least-elem a1) a1)))

sort 4.5 14 (λ (a1) (analist (λ (a2) (paralist (λ (a3 a4 a5) (extract-least-elem a5)) a2 a2)) a1))

Total 16.3

Non-incremental: TIMEOUT (586.6 seconds, depth 19)

Figure 4. The sort problem sequence: specification and results.

failure occurred at the testing stage, we added new training
examples and re-ran the experiment. For the final specifica-
tions given in the figures, every solution program has passed
all of its test examples.

We recorded the times taken for MagicLisper to solve
the stages of each sequence. Total times was determined by
adding these values together. Following each sub-problem
in a sequence, the inferred solution program was added to
the library of primitives and assigned a weight of 2.5, 2.5,
3.5, or 3.0 in the case of problem sequences deref-list,
reverse, sort, and block-lengths respectively. The li-
brary of primitives was reset to its default state between
problem sequences. We also tested how our system fared

when solving each main problem on its own with the de-
fault primitive library, i.e. without incremental learning. We
allowed at least 500 seconds for every problem; if this time
limit was exceeded then the computation was aborted af-
ter allowing for the current search iteration to finish, and
‘TIMEOUT’ was indicated in the results table. Also given
in each results table are the search depths, in units of pro-
gram weight, at which any solution was found or a timeout
occurred, as well as the solution programs themselves. The
experiments were performed on a 2 GHz Intel Core II Duo
desktop PC with 2 GB of RAM running GNU CLISP.



block-lengths: replaces all blocks of consecutive iden-
tical elements in a list with their lengths.
— Training examples —
() → () [50 steps]
(8) → (1) [200 steps]
(7 6) → (1 1) [700 steps]
(8 8 3 4) → (2 1 1) [5000 steps]
(6 5 5 4) → (1 2 1) [5000 steps]
— Test examples —
(7 7 7 7 7 5 5 5 7 7 2 2 4 9 9 9) →

(5 3 2 2 1 3)
(5 8 8 4 9 1 2 1 2) →

(1 2 1 1 1 1 1 1)
(0 0 0 0 0 7 0 0 0 5 5 5 5 5 5) →

(5 1 3 6)

Incremental specification

1. car-p: tests whether an object is the first element of a
list.
— Training examples —
0, () → f [15 steps]
1, () → f [15 steps]
4, (4) → t [15 steps]
5, (2) → f [15 steps]
8, (8 2) → t [15 steps]
7, (6 2 7) → f [15 steps]
— Test examples —
7, (8 7 7 6 4 7) → f

3, (3 8 1 4) → t

2. remove-first-block: removes the first block of consecu-
tive identical elements from a list.
— Training examples —
(8) → () [30 steps]
(4 6) → (6) [100 steps]
(1 3 1 3) → (3 1 3) [400 steps]
(9 9 8 6 9 3) → (8 6 9 3) [1000 steps]
(5 5 5 5 4 9) → (4 9) [1000 steps]
— Test examples —
(7 7 7 7 4 4 3 3 7 8 8 7 2 2) →

(4 4 3 3 7 8 8 7 2 2)
(1 6 5 1 2 2 2) → (6 5 1 2 2 2)
(9 9 9 9 9) → ()

3. length: finds the length of a list.
— Training examples —
() → 0 [10 steps]
(8) → 1 [20 steps]
(10 4 7 2) → 4 [50 steps]
— Test examples —
(8 4 7 3 2 9 1 1 2) → 9
(92 −8 7 83 24) → 5

4. length-first-block: finds the length of the first block of
consecutive identical elements in a list.
— Training examples —
(8) → 1 [50 steps]
(4 6) → 1 [100 steps]
(9 9 8 6 9 3) → 2 [1000 steps]
— Test examples —
(3 3 3 3 8 7 6 3 4 5) → 4
(5 5 5 5 5 5 5 2 2) → 7

5. convert-first-block-to-length: replaces the first block
of consecutive identical elements in a list with its length.
— Training examples —
() → () [20 steps]
(8) → (1) [100 steps]
(7 6) → (1 6) [400 steps]
(8 8 3 4) → (2 3 4) [2000 steps]
(5 5 5 3) → (3 3) [2000 steps]
— Test examples —
(8 8 8 6 6 6 6) → (3 6 6 6 6)
(4 1 5 4 2 2) → (1 1 5 4 2 2)

6. block-lengths

Results

Stage Time / s Depth Solution
car-p 0.4 11 (λ (a1 a2) (paralist (λ (a3 a4 a5) (eql a3 a1)) a2 f))

remove-first-block 0.5 12 (λ (a1) (paralist (λ (a2 a3 a4) (if (car-p a2 a3) a4 a3)) a1 a1))

length 0.2 12 (λ (a1) (paralist (λ (a2 a3 a4) (inc a4)) a1 0))

length-first-block 6.9 15 (λ (a1) (length (paralist (λ (a2 a3 a4) (cdr a4)) (remove-first-block a1) a1)))

convert-first-block-to-length 4.8 14 (λ (a1) (paralist (λ (a2 a3 a4) (cons (length-first-block a1) (remove-first-block a1))) a1 a1))

block-lengths 0.1 9 (λ (a1) (analist (λ (a2) (convert-first-block-to-length a2)) a1))

Total 12.9

Non-incremental: TIMEOUT (561.8 seconds, depth 19)

Figure 5. The block-lengths problem sequence: specification and results.



remove-elems min

least-elem

extract-least-elem

sort

6

@
@
@
@I

��
�*

6

car-p

remove-first-block

length

length-first-block

convert-first-block-to-length

block-lengths

6

���@
@

@
@I �

�
�
��

Z
Z}

6

Figure 6. Dependency graphs for the solutions to the sort and block-lengths problem sequences. Each arrow x → y
means ‘program x invokes program y’.

5.2 Analysis
The total times taken for our system to solve the incremental
specifications ranged between 1 and 16 seconds. On the
other hand, all of the non-incremental scenarios took more
than 500 seconds, with a solution only being found at all in
the case of reverse. This amounts to an increase in speed
due to incremental learning of at least a factor of thirty in
every case.

On inspection of the solution programs for the incremen-
tal sequences, we see that the majority of programs do in-
deed invoke earlier solutions, as expected. Indeed, for the
longer sequences sort and block-lengths we can visu-
alise a graph of dependencies between the solution programs
(figure 6).

The timing results indicate that, at worst, incremental
learning can greatly improve the performance of IP, while,
at best, it is able to make otherwise intractable problems
tractable. To see why this should be the case, consider the
following computational complexity argument. Assuming
that it takes constant time to generate and test each program,
then the time taken for MagicLisper’s search algorithm to
solve a given problem will be proportional to the total num-
ber of programs generated. We expect this to be approxi-
mately O[bd], where b is the search branching factor, roughly
proportional to the size of the primitive library, and d is the
search depth of the lowest-weight solution program that ex-
ists for the problem. Now, if we make an assumption that
with incremental learning we can always divide a problem
into sub-problems whose solution depths are bounded by a
constant d0, then the time taken to solve the problem in in-
cremental stages is no more than O[n(b0+n∆b)d0 ], where n
is the number of stages, b0 is the branching factor of the de-
fault primitive library and ∆b is the increase in the branching
factor that occurs each time we add a new primitive. Let us
also assume that the number of stages required to satisfac-
torily break down a problem is roughly proportional to the
depth of the lowest-weight solution program that we’d get if
the problem were solved non-incrementally, in other words,
n = kd. This gives us a time taken of O[kd(b0 + kd∆b)d0 ],
or simply O[dd0+1] with respect to d, if the problem is solved
incrementally, compared with O[b0d] if it is solved non-

incrementally. In this way, IP with incremental learning can
allow a system solve, in polynomial time, problems that take
exponential time with non-incremental IP.

6. Limitations and further work
The main contribution of this paper has been to demonstrate
a simple, working methodology for incremental learning
in IP. This methodology involved equipping a brute-force
search based IP system with an ability to reuse solution
programs by adding them to its primitive library. We showed
that this mechanism can be effective by demonstrating its use
on four problems, each of which had been broken down into
an appropriate sequence of sub-problems. Our IP system was
able to solve the problems orders of magnitude more quickly
when making using of the incremental sequences than when
simply solving the main problems in isolation.

In this section we address the limitations of our simple in-
cremental learning methodology; in particular we talk about
the difficulties involved in constructing problem sequences.
We consider how to overcome these limitations, and discuss
how, by eliminating the need for problem sequences to be
designed by a human expert, we aim to enable a much more
useful, autonomous form of incremental learning.

6.1 Limitations of the simple methodology
The main drawback of the simple incremental learning
methodology presented in this paper is the significant amount
of human effort and expertise required to design effec-
tive problem sequences. Based on our experience design-
ing problem sequences for MagicLisper, we feel that the
need for this effort and expertise is largely due to what we
shall call ‘brittleness’ in the system’s learning mechanism.
In other words, problem specifications must obey certain
conditions in order for learning to work, and they ‘break
easily’, i.e. if these conditions are not met perfectly, then the
system will fail to find a solution at all.

One source of brittleness in our mechanism is the fact that
solutions to sub-problems are only useful if a solution to the
main problem can be expressed in terms of them directly.
It is not enough for a sub-problem simply to be related
to the main problem, for example if their solutions would
share some common structure. In consequence, the success



or failure of incremental learning is very sensitive to the
exact choice and order of sub-problems. Often, the only way
to predict if a particular sub-problem will be effective is to
use ones knowledge of how one might implement the target
program by hand; in other words, using the IP system does
not save one much effort over hand-coding the program. Our
methodology suffers from brittleness in two other ways too.
Firstly, the IP system will not tolerate any error or noise in
the training examples. Secondly, if any of the step counts
associated with the training examples are too low, the system
will again completely fail to find a solution.

6.2 Overcoming the limitations
Our simple methodology seems capable of scaling up to rel-
atively complex problems, but at the cost of a degree of hu-
man effort expended in designing problem sequences at least
as great as would be required to code the solutions by hand.
In this subsection we discuss how to eliminate the three
sources of ‘brittleness’ described in the last subsection, with
the aim of developing a mechanism that is flexible enough to
perform incremental learning over loosely constructed sets
of problems, rather than precisely constructed sequences.

The need to specifiy step counts with training examples
should be the easiest limitation to overcome. In MagicHaskeller,
it is already unnecessary to specify step counts, because the
system simply tests all programs until termination, relying
on the fact the primitive library belies the possibility of infi-
nite loops. However, we don’t expect this approach to remain
feasible as we start to generate more complex programs, be-
cause the number of programs that run for a long time before
termination will become much larger. Instead, we propose
using an algorithm like ‘Levin search’ (Schmidhuber 2004),
in which the iterative deepening nature of our IP search is
extended so as to automatically re-test programs for longer
and longer step counts as the search progresses.

The need for a solution to a main problem to be express-
ible directly in terms of solutions to sub-problems could be
overcome as follows. Suppose that we modify our incremen-
tal learning mechanism such that, instead of adding actual
solution programs to the primitive library, it attempts to de-
rive re-usable procedural abstractions from groups of solu-
tion programs, and then adds these abstractions as the new
primitives. The potential re-usabilility of a procedural ab-
straction can be measured objectively using a principle of
‘minimum description length’: if a procedure, when reused
in multiple solution programs, serves to reduce the combined
size of these programs by more than its own size, then we
can deem it a useful abstraction. Though the best way to dis-
cover candidate abstractions is an open question, it would
seem a reasonable starting point to try a brute-force search.
This method of incremental learning would be much more
adaptable and generic than our original mechanism, in that
it should be able to extract useful inductive bias from almost
any kind of shared structure or commonality between solu-
tion programs. We know of at least one previous implemen-

tation of a similar idea: the ‘Duce’ system (Muggleton 1987)
can discover abstractions that encapsulate shared structure
among groups of statements in propositional logic.

To overcome the lack of toleration of errors or noise in the
training examples, we feel that the most satisfactory solution
will ultimately be to reformulate our IP methodology within
a probabilistic framework. In such a framework, a program
would no longer describe a deterministic mapping from in-
puts to outputs, rather it would represent a conditional prob-
ability distribution over the set of possible outputs given the
inputs. Such a reformulation is highly desirable if our aim
is to develop a machine learning technique of practical use,
since real-world data is usually noisy. Indeed, the develop-
ment of probabilistic frameworks for IP is an active area
of research, particularly within inductive logic programming
(De Raedt and Kersting 2004).

In overcoming the above limitations, our eventual goal is
to produce an IP methodology capable of performing incre-
mental learning simply from a corpus of data, without the
need for that data to be organised into problem sequences
by a human expert. To see how this might work, first con-
sider how a system could perform incremental learning if
provided with a large bank of related problems of various
difficulties, in no particular order. Such a system could re-
peatedly scan through the problems, briefly attempting to
solve each as it goes. Some of the problems might be easy
enough to solve immediately, and the system could then use
the solutions of these to derive procedural abstractions which
it would add to its primitive library. On the next scan through
the problem bank, these new primitives should enable the
system to solve some problems that were previously out of
its reach. Ideally, the process iterates until most of the prob-
lems are solved. Consider next how one might extend this
idea in order to create a system capable of automonomously
learning a model for a complex environment or corpus of
data. In a such a situation, it might often be the case that var-
ious parts of the environment or corpus can be described by
simple models. By analogy with the ‘bank of problems’ sce-
nario, one may imagine an incremental learning system that
initially looks for these simple models, adds abstractions de-
rived from those models to its background knowledge, then
searches for more complex models, and so on. We may think
of this process as an automation of the scientific method.

7. Conclusion
In this paper, we have demonstrated a simple but effective
incremental learning mechanism for an inductive program-
ming system. It works by having the system incorporate so-
lution programs into its object language as new primitive
functions as it progresses through a sequence of problems.
The mechanism is capable of producing orders of magni-
tude improvements in problem solving performance, but at
the expense of considerable human effort spent in designing
appropriate problem sequences. However, we have sketched



a number of possible improvements to the mechanism which
should reduce or remove much of the need for this human
guidance. Our aim is that this methodology can eventually
be developed into a powerful generic machine learning tech-
nique by which a system can learn a model of a large, com-
plex dataset in an autonomous fashion.

Acknowledgments
Thank you to my MSc supervisor Michael O’Boyle, for his
support and encouragement on this project.

References
L. Augusteijn. Sorting morphisms. In 3rd International Summer

School on Advanced Functional Programming, volume 1608 of
LNCS, pages 1–27. Springer-Verlag, 1998.

L. De Raedt and K. Kersting. Probabilistic inductive logic program-
ming. In ALT, volume 3244 of LNCS, pages 19–36. Springer,
2004.

M. Hofmann, E. Kitzelmann, and U. Schmid. A unifying frame-
work for analysis and evaluation of inductive programming sys-
tems. In Proceedings of the Second Conference on Artificial
General Intelligence (AGI-09), 2009.

S. Katayama. Systematic search for lambda expressions. In Re-
vised Selected Papers from the Sixth Symposium on Trends in
Functional Programming, TFP 2005, volume 6, pages 111–126.
Intellect, 2007.

K. Khan, S. Muggleton, and R. Parson. Repeat learning using
predicate invention. In Inductive Logic Programming, volume
1446 of LNCS, pages 165–174. Springer, 1998.

E. Kitzelmann. Data-driven induction of recursive functions from
input/output-examples. In Proceedings of the ECML/PKDD
2007 Workshop on Approaches and Applications of Inductive
Programming (AAIP’07), pages 15–26, 2007.

S. Muggleton. Duce, an oracle based approach to constructive
induction. In IJCAI-87, pages 287–292, 1987.

J. R. Olsson. Inductive functional programming using incremental
program transformation. Artificial Intelligence, 74(1):55 – 83,
1995.

J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report.
In Proceedings of the 6th European Conference on Machine
Learning, LNCS, pages 3–20. Springer-Verlag, 1993.

J. Schmidhuber. Optimal ordered problem solver. Machine Learn-
ing, 54(3):211–254, 2004.

J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias
with success-story algorithm, adaptive levin search, and incre-
mental self-improvement. Machine Learning, 28(1):105–130,
1997.

R. J. Solomonoff. Progress in incremental machine learning. Given
at NIPS Workshop on Universal Learning Algorithms and Opti-
mal Search, Dec. 14, 2002, Whistler, B.C., Canada., 2002. URL
http://world.std.com/∼rjs/pubs.html.


